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Abstract

This report describes work performed from June 2012 thrddglg 2014 as a part of a Sandia
Early Career Laboratory Directed Research and Develop(h&RD) project led by the first au-
thor. The objective of the project is to investigate methimauilding stable and efficient proper
orthogonal decomposition (POD)/Galerkin reduced ordedeis(ROMSs): models derived from a
sequence of high-fidelity simulations but having a much loggemputational cost. Since they are,
by construction, small and fast, ROMs can enable real-timalations of complex systems for on-
the-spot analysis, control and decision-making in thegares of uncertainty. Of particular interest
to Sandia is the use of ROMs for the quantification of the casgible captive-carry environment,
simulated for the design and qualification of nuclear wegEystems. It is an unfortunate reality
that many ROM techniques are computationally intractablack ana priori stability guarantee
for compressible flows. For this reason, this LDRD projeciuges on the development of tech-
niques for building provably stable projection-based ROMsdel reduction approaches based on
continuous as well as discrete projection are considered.

In the first part of this report, an approach for building gyestable Galerkin ROMs for lin-
ear hyperbolic or incompletely parabolic systems of phdifierential equations (PDES) using
continuous projection is developed. The key idea is to apphansformation induced by the Lya-
punov function for the system, and to build the ROM in the $farmed variables. It is shown that,
for many PDE systems including the linearized compresdtbiler and linearized compressible
Navier-Stokes equations, the desired transformatiordisaaed by a special inner product, termed
the “symmetry inner product”. Attention is then turned tanhiear conservation laws. A new
transformation and corresponding energy-based innemptddr the full nonlinear compressible
Navier-Stokes equations is derived, and it is demonstithigif a Galerkin ROM is constructed
in this inner product, the ROM system energy will be boundea way that is consistent with the
behavior of the exact solution to these PDEs, i.e., the RONVbeienergy-stable. The viability of
the linear as well as nonlinear continuous projection moelélction approaches developed as a
part of this project is evaluated on several test casesjdimglj the cavity configuration of interest
in the targeted application area.

In the second part of this report, some POD/Galerkin appreséor building stable ROMs using
discrete projection are explored. It is shown that, for giedamear time-invariant (LTI) systems, a
discrete counterpart of the continuous symmetry inneryeois a weighted.? inner product ob-
tained by solving a Lyapunov equation. This inner produd firat proposed by Rowlest al., and
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is termed herein the “Lyapunov inner product”. Comparidogisveen the symmetry inner product
and the Lyapunov inner product are made, and the performariR®Ms constructed using these
inner products is evaluated on several benchmark test.cAlsesin the second part of this report,

a new ROM stabilization approach, termed “ROM stabilizatita optimization-based eigenvalue
reassignment”, is developed for generic LTI systems. Atrtba&rt of this method is a constrained
nonlinear least-squares optimization problem that is tdated and solved numerically to ensure
accuracy of the stabilized ROM. Numerical studies reveat the optimization problem is com-

putationally inexpensive to solve, and that the new stadtilbn approach delivers ROMs that are
stable as well as accurate.

Summaries of “lessons learned” and perspectives for futork motivated by this LDRD project
are provided at the end of each of the two main chapters.
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Chapter 1

Introduction

Numerous modern-day engineering problems require thelation of complex systems with tens
of millions or more unknowns. Despite improved algorithnmsl dhe availability of massively
parallel computing resources, “high-fidelity” models aire practice, often too computationally
expensive for use in a design or analysis setting. An exawipéa application area of interest
to Sandia in which this situation arises is the quantificatdthe captive-carry environment for
the design of nuclear weapons systems (illustrated in Eigut). Since a weapons bay and its
contents experience large unsteady pressure loads whesezkjp the grazing external flow field,
special care must be taken to design these components satdhek are able to withstand loads
of this magnitude. Large Eddy Simulations (LES) with veryefimeshes and long run times are
required to predict accurately these dynamic loads. Thealatmons can take on the orderwéeks

to complete even when run in parallel on state-of-the-ggestomputers. The fact that they need
to be repeated numerous times in a design, qualificatioroamaicertainty quantification (UQ)
setting presents an intractable computational burdens Jihiation has prompted researchers to
develop reduced order models (ROMs): models constructed frigh-fidelity simulations that
retain the essential physics and dynamics of their corredipg full order models (FOMSs), but
have a much lower computational cost. Since ROMs are, byteat®n, small, they can enable
uncertainty quantification as well as on-the-spot decisiaking and/or control.

In order to serve as a useful predictive tool, a ROM shouldess the following properties: con-
sistency (with respect to its corresponding high-fidelitydal), stability, and convergence (to the
solution of its corresponding high-fidelity model). The ced of these properties, namely nu-
merical stability, is particularly important, as it is a prguisite for studying the convergence and
accuracy of a ROM. It is well-known that popular model reductpproaches known as the proper
orthogonal decomposition (POD) method [88, 12, 50] and #iarized proper orthogonal decom-
position (BPOD) method [95, 79] lack, in general,apriori stability guarantee. It is emphasized
that instability of POD/BPOD ROMs ist@al problem in some applications, notably in the field of
fluid mechanics, where it is encountered in compressibléamigh Reynolds number flows (pre-
cisely the dynamics that are modeled in the targeted apiglicarea, the captive carry problem!).
While there does exist a model reduction technique that memeous stability guarantee, known
as balanced truncation [73, 42], the computational coshisfrhethod, which requires the com-
putation and simultaneous diagonalization of infinite colfdbility and observability Gramians,
makes this method computationally intractable for systefwery large dimensions (i.e., systems
with more than 10,000 degrees of freedom [81]).
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(a) Weapons bay of (b) Compressible cavity with ob-
an airplane ject

(c) 2D cross-section of compressible cavity

Figure 1.1. Compressible captive-carry problem

The objective of this Sandia National Laboratories’ Labomna Directed Research and Develop-
ment (LDRD) project is to explore new approaches for develptable and efficient reduced

order models, and to study the viability of these models gdpting the dynamics of the com-

pressible cavities modeled in the targeted captive-capjietion. The project has theoretical as
well as practical milestones:

e Theoretical: To develop novel stability-preserving model reductionrapghes that could
impact Sandia as well as the broader scientific community.

e Practical: To create software that enables the numerical study of theoaphes developed
as a part of this project.

The model reduction approaches identified as the most piagnis this report will be imple-
mented in the Sandia in-house LES flow sol&KGVA CFD, currently used to simulate the captive-
carry environment. Thus, the work described herein can ée ae a necessary first step towards
providing a breakthrough capability for a mission-criti€andia application.

The remainder of this report is organized as follows.

e Chapters 2—4 contain some preliminaries. Chapter 2 givasfiberature review summariz-
ing various approaches to building stable POD/Galerkin BOSkveral notions of stability
that are employed throughout this report are defined in @n&pt Projection-based model
reduction, in particular, the POD/Galerkin method is ov@med in Chapter 4. Two projec-
tion approaches are detailed and compared/contrastedingouns projection and discrete
projection.
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e Chapter 5 focuses on the development of energy-stable ROMEnEar as well as non-
linear conservation laws using continuous projectionstfithe linear case is considered.
The energy-stable model reduction approach developedfispég for the equations of lin-
earized compressible inviscid flow in [20] is extended toegenlinearized conservation
laws. The key idea is to apply a transformation induced bylLifepunov function for the
system, and to build the ROM in the transformed variabless $hown that, for many lin-
earized PDE systems of the hyperbolic and incompletelyhmdiatype, the desired trans-
formation is induced by a special weighteélinner product, termed the “symmetry inner
product”. Next, a new methodology for building energy-#aROMs for the full nonlinear
compressible Navier-Stokes equations is developed. Thmagph is based on a carefully
constructed transformation and energy inner product dérer the PDEs of interest. The
proposed linear as well as nonlinear model reduction agpesaare evaluated on several
test cases, including the compressible cavity problemtefast, following a discussion of
the ROM code (known aSpi ri t) in which the methods are implemented.

e Chapter 6 explores stability-preserving model reductippreaches based on discrete pro-
jection. It is demonstrated that a discrete weightééhner product first derived by Rowley
et al. in [81] and termed herein the “Lyapunov inner product” is acdéte counterpart
of the symmetry inner product (introduced in Chapter 5). Weeghting matrix that de-
fines the Lyapunov inner product can be computed in a blagkidshion for a stable linear
time-invariant (LT1) system arising from the discretizatiof a linear system of PDEs in
space. Some numerical studies of POD ROMs constructed ihytiggunov inner product
are performed, and comparisons are made to balanced tiamciEext, a new approach for
stabilizing projection-based ROMs for LTI systems is depeld, termed ROM stabilization
via eigenvalue reassignment [61]. In this approach, a cangd nonlinear least-squares
optimization problem that minimizes the error in the ROMpmut(thereby maximizing the
accuracy of the ROM) is formulated. The said optimizatioolpem is small, with at most
as many degrees of freedom (dofs) as the number of dofs in@i, Rnd therefore compu-
tationally inexpensive to solve. Numerical results rethat the new stabilization approach
delivers ROMs that are both stable and accurate.

e Some conclusions, a summary of “lessons learned”, and gergps for future work are
discussed at the end of each of the two main chapters of {histreChapter 5 and Chapter
6.

The reader is referred to the following SAND reports andclesi written during the time of this
LDRD project for more details on the topics described in teort: [55, 59, 60, 61, 35].

In addition to these publications, the ideas summarizedihevere communicated to the broader
scientific community in the following presentations giventbe Principal Investigator (PI):

e |. Kalashnikova, S. Arunajatesan. “A Stable Galerkin Retli©rder Model (ROM) for
Compressible Flow”.10th World Congress on Computational Mechanics (WCCMink)
vited), Sao Paulo, Brazil, July 13, 2012.

e |. Kalashnikova, S. Arunajatesan. “Towards Feedback @bafrCompressible Flows Using
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Galerkin Reduced Order ModelsSecond International Workshop on Model Reduction for
Parameterized Systems (MoRePaS3hhloss Reisensburg, Gunzburg, Germany, Oct. 2-5,
2012.

|. Kalashnikova, S. Arunajatesan, B. van Bloemen Waandé&nsergy-Stable Galerkin Re-
duced Order Models for Prediction and Control of Fluid Syst& SIAM Conference on
Computational Science and Engineering (CSE18)ited), Boston, MA, Feb. 26, 2013.

|. Kalashnikova , B. van Bloemen Waanders, S. ArunajateBarBarone. “Stabilization
of Galerkin Reduced Order Models (ROMs) for LTI Systems gs@ontrollers”. SIAM
Conference on Control and Its Applications (CT13an Diego, CA, July 9, 2013.

|. Kalashnikova, B. van Bloemen Waanders, S. ArunajatédaBarone. “Stabilized Projection-
Based Reduced Order Models for Uncertainty Quantificati®AM Conference on Uncer-
tainty Quantification (SIAM UQ14B5avannah, GA, Mar. 31-Apr. 3, 2014.

|. Kalashnikova, J. Fike, M. Barone, S. Arunajatesan. “Bgpestable Galerkin Reduced
Order Models (ROMs) for Nonlinear Compressible Flow’1th World Congress on Com-
putational Mechanics (WCCM XlIBarcelona, Spain, July 20-25, 2014.
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Chapter 2

Literature review

As mentioned in Chapter 1, reduced order models construted) the POD/Galerkin method
(Chapter 4) lack in general anpriori stability guarantee. The stability of these reduced models
is commonly evaluated posteriori a ROM is constructed, used to predict some dynamical be-
havior, and subsequently deemed a success if the soluttmesaied by the ROM are numerically
stable and accurately reproduce the expected behaviore T$isome risk inherent in this sort of
analysis: there is always the possibility that the ROM sofutvill exhibit non-physical unstable
dynamics, which can lead to practical limitations of the RQMfortunately, ROM instability is a
real problem in some applications, including the targeted c@sgible cavity problem: as demon-
strated in [25], a compressible fluid POD/Galerkin ROM mightstable for a given number of
modes, but unstable for other choices of basis size.

Before beginning the discussion of the stability-presagunodel reduction methods studied and
developed as a part of this LDRD project, a concise reviewxgdtiag approaches for building
stable projection-based ROMs is given. It is noted thatekdeesexist a projection-based model
reduction technique possessing a rigorous stability guieea namely balanced truncation [73,
10], but this method is not considered here as it is not prakfor the problem of interest: it
is computationally intractable for systems having morenth@,000 dofs [81], and is, in general,
limited to linear problems.

A literature search reveals that approaches for develogialility-preserving projection-based
ROMSs based on the POD fall into several categories.

The first category of methods derivesriori) a stability-preserving model reduction framework,
often specific to a particular equation set. In [81], Rowétyal. show that Galerkin projection
preserves the stability of an equilibrium point at the origthe ROM is constructed in an “energy-
based” inner product. In [20, 57], Baroeeal. demonstrate that a symmetry transformation leads
to a stable formulation for a Galerkin ROM for the linearizesnpressible Euler equations [20, 57]
and nonlinear compressible Navier-Stokes equations [%)] solid wall and far-field boundary
conditions. In [85], Serret al. propose applying the stabilizing projection developed laydde

et al. in [20, 57] to a skew-symmetric system constructed by augimgm given linear system
with its adjoint system. This approach yields a ROM thatabk at finite time even if the solution
energy of the full-order model is growing. In [86, 87], Sinpxet al. develop a method for correcting
long-term unstable behavior for POD models using a spedseabsity (SV) diffusion convolution
operator. The advantage of approaches such as these isrthepysics-based, and guarantee
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a priori a stable ROM; the downside is that they can be difficult to anpnt, as access to the
high-fidelity code and/or the governing partial differahgquations (PDES) is often required.

Another category of methods is aimed to remedy the so-catkede truncation instability”. These
methods [5, 76, 22, 15, 92], motivated by the observationtityner order modes can give rise to
non-physical instabilities in the ROM system, are oftengibg-based and minimally intrusive to
the ROM. In [15], a ROM stabilization methodology that asiei® improved accuracy and stability
through the use of a new set of basis functions represertengrhall, energy-dissipation scales of
turbulent flows is derived by Balajewie al. The stabilization of ROMs using shift modes and
residual modes was proposed in [76] and [22] by Noeickl. and Bergmanret al. respectively.
Other authors, e.g., Terragei al. [92], have demonstrated that the stability and performarfiee
ROM can be improved by adapting the POD manifold to the logakdhics.

In a third category of approaches, an unstable ROM is stailihrough a post-processiraydos-
teriori) stabilization step applied to an unstable algebraic ROMesy. Ideally, the stabilization
only minimally alters the ROM physics, so that the ROM’s aecy is not sacrificed. In [7], Am-
sallemet al. propose a method for stabilizing projection-based lingalWR through the solution of
a small-scale convex optimization problem. In [24], a sdin&far constraints for the left-projection
matrix, given the right-projection matrix, are derived byriglet al. to yield a projection framework
that is guaranteed to generate a stable ROM. In [94], &thal. derive some LES closure models
for POD ROMs for the incompressible Navier-Stokes equatiand demonstrate numerically that
the inclusion of these LES terms yields a ROM with increasaderical stability. In [32], Couplet
et al. propose methods for correcting the behavior of a low-ord@Dfsalerkin system through
a coefficient calibration/minimization. A nice feature bese and similar approaches is that they
are easy to implement: often the stabilization step can péeapin a “black-box” fashion to an
algebraic ROM system that has already been constructedevmwthe approaches can give rise
to inconsistencies between the ROM and FOM physics, thdnelityng the accuracy of the ROM.

Other ROM approaches, e.g., the Gauss—Newton with ApprabedTensors (GNAT) method of
Carlberget al. [27], circumvent the stability issue by formulating the RGi¥ithe fully discrete
level, that is, by projecting the ROM equations only aftexytinave been discretized in space as
well as in time. Various heuristics for obtaining stable ROhave also been noted. For example, in
[8], Amsallemet al. suggest that projection-based ROMs constructed for LTtesys in descriptor
form tend to possess better numerical stability propettias those constructed for LTI systems in
non-descriptor form.

The approaches described in this report fall into the firgtaffer 5 and Section 6.1) and third
categories (Section 6.2) summarized above.
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Chapter 3

Stability definitions

As stated in Chapter 1, this LDRD project focuses on the a@gveént of projection-based ROMs
that possess aa priori stability guarantee. Before beginning this discussiomesgeneral defi-
nitions of stability that will be used in the subsequent gsiglare reviewed. Of particular interest
is the concept of energy-stability, which appears in thbikta proofs given in subsequent chap-
ters. The term energy-stability is defined in Section 3.1, @hated to more classical definitions
of stability, e.g., Lyapunov stability, asymptotic statlyil exponential stability and time-stability,
in Sections 3.2-3.3.

3.1 Energy-stability

The concept of energy-stability originated in the literatinvolving the numerical analysis of
spectral and finite difference discretizations to timeeatefent PDEs [40, 47, 45]. It has also
appeared in the Galerkin finite element method literatuce, 14, 67], where the energy-method
was employed to derive stable Galerkin methods for hyperbohservation laws. Itis well-known
that physical systems admit a certain energy structureb@hie idea behind building energy-stable
ROMs is that a ROM constructed for such systems should presieis energy structure. Among
the authors who have explored the concept of energy-dialbilithe context of model reduction
are Rowleyet al. [79] and Kwasniok [66]. In [79], Rowlet al. introduced a family of “energy-
based” inner products for the purpose of constructing st&allerkin ROMs for fluid problems. In
[66], Kwasniok recognized the role of energy conservatioROMs of nonlinear, incompressible
fluid flow for atmospheric modeling applications, and praggba Galerkin projection approach in
which the ROM conserves turbulent kinetic energy or turbuémstrophy.

The notion of energy-stability will be introduced in the text of a specific canonical model
problem, then generalized. Consider, without loss of gaitgrthe following scalar initial value
problem, known as a Cauchy problem [64]:

X(t) =.2(x1), t>0

x(0) —f. (3.1)

Here,.# denotes a linear differential operator with constant coieffits,f € R" is the initial con-
dition, andx(t) € R" is the system state at tinhe> 0. The operatorZ is said to be semi-bounded
with respect to an inner produ¢t, -) if it satisfies the following inequality for all sufficiently
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smooth functionsv € L2:
(Wwi/ﬂw) < a(W7W)7 (32)

wherea € R. The following theorem (quoted from [64]) states the caondi under which the
Cauchy problem (3.1) is well-posed.

Theorem 3.1.1 [64]: The Cauchy problem (3.1) is well-posed if and only if the @per.Z is
semi-bounded with respect to an inner produgct which corresponds to a norm equivalent to the
L2 norm.

Consider now a Galerkin approximation to (3.1), denotee hgixy, and satisfying

(XN7¢> = (X(XN>7¢)7 (33)

for all @ sufficiently smooth, and suppos€ is semi-bounded with respecttg-). Setting@ = xn
in (3.3) leads to the following energy estimate for the Gateapproximation:

%—Et'\‘ < 2aEy, (3.4)

whereEy = %HXNHZ denotes the energy of the Galerkin approximatiqnand|| - || is the norm
induced by the inner produ¢t, -). Applying Gronwall’s lemma ((A.1) in Appendix A.1) to (3.4)
gives the inequality

1
[xn(t)]] < €29 ||xn(0)]]. (3.5)
The result (3.5) says that the energy of the numerical smiub (3.3) is bounded in a way that is
consistent with the behavior of the energy of the exact &oiub the original differential equation

(3.1), i.e., the numerical solution is energy-stable. Tdefinition can be extended to a generic
ROM system.

Definition 3.1.2 (Energy-Stability [45]):A ROM system is called energy-stable if

Em(t) <e™Em(0), (3.6)
for some constard € R, where
1
Ew = 5[Pxwmll® (3.7)
is the system energy of the ROM numerical solutign and|| - || is a norm equivalent to thie?

norm.

In general, a ROM system is not guaranteed to satisfy Defmif.1.2 even if the underlying
initial boundary value problem (IBVP) is well-posed and th# order system arising from the
discretization of the governing PDEs in space is stable. ¢éd@w it is often possible to ensure
(3.6) holds for the ROM system through a careful selectiotihefreduced trial and test basbg
andW)y and/or the inner product in which the projection step of tleelal reduction is performed
(Chapters 5 and 6).
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3.2 Lyapunov, asymptotic and exponential stability

The concept of energy-stability can be related to classioibns of stability, namely Lyapunov
stability, asymptotic stability and exponential staili€onsider an autonomous nonlinear dynam-
ical system:

x=f(x), xeR" (3.8)

wheref € R" is a given function, subject to some initial conditiof®) = xo. Letxe be an equilib-
rium point of the system (3.8), meanifigce) = Ofor allt > 0.

Definition 3.2.1 (Lyapunov, asymptotic and exponentiabifity) [11]: The equilibrium pointxe
of (3.8) is said to be:

(a) Lyapunov stablé Ve > 0 there exists &(&) > 0 such that iff|x(0) — X¢|| < J, then||x(t) —
Xe|| < €Vt >0.

(b) Asymptotically stabléthere exists & > 0 such that if|x(0) —Xe|| < &, then lim_. ||X(t) —
XeH - O

(c) Exponentially stabléf there exista, 3,6 > 0 such that if||x(0) — xe|| < J, then||x(t) —
Xe|| < a|[x(0) — x¢||e" Pt Wt > 0.

In other words, if an equilibrium point of (3.8) is Lyapunotable, solutions within a distance
0 > 0 from it will remain a distance > 0 from it for all time; if it is asymptotically stable,
solutions within this distance will eventually convergeth@ equilibrium; if it is exponentially
stable, the solutions will not only converge, but at an exguaial rate. In general, exponential
stability implies asymptotic stability, and asymptotialstity implies Lyapunov stability.

The following theorem, known as the Lyapunov Stability Tieen [11], can be used to characterize
the stability of an equilibrium pointe for (3.8).

Theorem 3.2.2 (Lyapunov Stability Theorem) [1LEtV be a non-negative function dR" and
let V represent the time derivative Wfalong trajectories of the system dynamics (3.8), Ve=
P x = 94f(x). Let By = By(xe) be a ball of radius around an equilibrium pointe of (3.8). If
there exists an > 0 such tha¥/ is positive definite an¥ is negative semi-definite for atl € By,

thenxe is Lyapunov stable.

The functionV defined in Theorem 3.2.2 above is known as the Lyapunov fométir the system
(3.8). Observe that the numerical enekjydefined in (3.7) satisfies the definition of a Lyapunov
function (Theorem 3.2.2) i@ < 0. Thus, if a ROM is energy-stable wittn = 0 (Definition
3.1.2), then the ROM is Lyapunov stable. In Chapter 5 andi@eét1, it is shown how Theorem
3.1.2 can be used to define a stability-preserving innerymtfdr building stable ROMs.

The stability concepts introduced above simplify for theafic case of linear systems. It is
straightforward to verify that for linear systems, asyntigtand exponential stability are equiva-
lent. Moreover, the following result holds.
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Theorem 3.2.3 (Asymptotic Stability Theorem for Lineate3ys) [11]: A linear ROM system of
the formdéi—tM = AmXym is asymptotically (and exponentially) stable if and onlglifthe eigenvalues
of the ROM system matriAy have strictly negative real parts.

Theorem 3.2.3 is commonly used to check numericalgdsterior) the stability of a linear ROM
constructed for a linear system (Sections 5.5, 6.1.1 and)6.2

3.3 Time-stability

Another form of stability is what is referred to herein agré-stability”. Essentially, a system that
is time-stable is one whose solution will not “blow up” (i.produce an unbounded output) given a
finite input and/or non-zero initial condition. For a generanlinear system, exponential stability
implies time-stability, but time-stability is a strongestion than asymptotic stability [48]. Since
exponential and asymptotic stability are equivalent foedr systems, asymptotic stabildpes
imply time-stability in this special case.

The concept of time-stability can also be defined in terméefsystem energy.

Definition 3.3.1 (Time-Stability [45]):A ROM system is called time-stable if the numerical energy
of the ROM solution is non-increasing in time for an arbyrime step, i.e., if
dEy

— <0. .
<0 (3.9)

It is straightforward to demonstrate that a time-stableesuh is also energy-stable. Suppose a
ROM is time-stable, so the ROM solution satisfies the enesgiynate (3.9). Applying Gronwall’s
lemma ((A.1) in Appendix A.1) to this inequalitin (t) < En(0). Thus, (3.6) holds witlr = 0.

In general, the converse of the above statement does notdrdyy-stability does not necessarily
imply time-stability. This is to be expected. The practicaplication of a ROM possessing the
energy-stability property is that its numerical solutisrbounded in a way that is consistent with
the behavior of the exact solutions of the governing equatidt is possible in general that the
governing PDEs support instabilities. In this case, angnstable ROM may possess unbounded
solutions ag — oo, as (it can be argued) it should, if these unbounded solsitaoa physical.
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Chapter 4

Proper Orthogonal Decomposition
(POD)/Galerkin method to model reduction

In this chapter, the POD/Galerkin method to model redudsooverviewed. The POD/Galerkin
method is a projection-based method. The projection stépeahodel reduction (Section 4.3) can
be performed at either the discrete or continuous level®ibverning equations. In the discrete
projection approach, a semi-discrete (or fully discretd)2epresentation of the equations is pro-
jected onto the POD modes in a discrete inner product. Inrasitin the continuous projection
approach, the Galerkin projection step is applied to theisoaus system of PDEs in a continu-
ous inner product onto a continuous representation of the P&3is. A comparison of these two
projection methodologies is deferred until Section 4.3.

Consider a generic PDE (or system of PDES) of the form
X(t) = Z(x(t) +A4(x(1)), (4.1)

in an open bounded domaix In (4.1),.Z : R" — R" is a linear spatial differential operator, and
A :R"— R"is a nonlinear spatial differential operator. The symbdénotes time, angd € R"

is called the state vector. The symbol denotes differentiation with respect to time,,ixe= %.
Suppose the PDE system (4.1) has been discretized in spagesasne numerical scheme, e.g.,
the finite element method. The result will be a semi-discnetdinear system of the form:

Xn(t) = Axn(t) + NOxw(t)), (4.2)

wherexy € RN is the discretized state vectdy,e RN*N is a temporally-constant matrix arising
from the discretization of the linear operatgtin (4.1), and\ € RN is a nonlinear function arising
from the discretization of the nonlinear operatétin (4.1).

The general approach to projection-based model reductinsists of three steps, described below
(Sections 4.1-4.3).

Step 1. Calculation of reduced trial and test bases, denote®fy= ( @1, -, Pu ) and
Wy = (@, ---, Py )respectively, each of ordéd, withM << N.
Step 2: Approximation of the solution to (4.1) or (4.2) by
M
X(t) ~ ZXMJ(t)(pI = ®pyXm (t), (4.3)
i=
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wherexy (t) are the unknown ROM coefficients or modal amplitudes, to berdened in solving
the ROM.

Step 3. Substitution of the approximation (4.3) into the governsygtem ((4.1) or (4.2)) and
projection of this system onto the reduced test basis.

The result of this procedure is a “small” (sidd¢ << N) dynamical system that, for a suitable
choice of reduced bases, accurately describes the dynafries full order system for some set
of conditions. The reduced bas®y < RN*M and Wy € RN*M are functions of space but not
time, and are assumed to have full column rank. In the casepar ®v, the projection is
referred to as a Petrov-Galerkin projection. Otherwisdl\f = ®y, the projection is referred
to as a Galerkin projection. This terminology is introdudexte as it will be shown later that
the energy-stable model reduction approaches derivedsinvtirk are effectively Petrov-Galerkin
methods.

4.1 Calculation of the reduced basestep 1)

There exist a number of approaches for calculating the extibasis modesStep lof the model
reduction), e.g., the POD method [88, 12, 50], the BPOD ntf8b, 79], the balanced truncation
method [73, 42], the reduced basis method [93, 83]; also makstbhased on goal-oriented bases
[25], generalized eigenmodes [17], and Koopman modes [8&ntion is restricted here to the
POD basis, but it is noted that the energy-stability resigtsved in this report hold fasnychoice

of reduced basis. The reason for the choice of the POD rechasd is two-fold. First, the POD
is a widely used approach for computing efficient bases foadyical systems. Moreover, ROMs
constructed via the POD/Galerkin method lack in general priori stability guarantee (meaning
POD/Galerkin ROMs would benefit from stability-preservingdel reduction approaches such as
those developed herein).

Discussed in detail in Lumley [71] and Holmesal. [50], POD is a mathematical procedure that,
given an ensemble of data and an inner product, denotedigalheby (-, -), constructs a basis for
the ensemble. This basis is optimal in the sense that it ibescmore energy (on average) of the
ensemble in the chosen inner product than any other linesas bathe same dimensidvi. The
ensemblgxk:k=1,...,K} istypically a set oK instantaneous snapshots of a numerical solution
field, taken forK values of a parameter of interest, okatifferent times. Mathematically, POD
seeks arM-dimensional il << K) subspace spanned by the §¢} such that the projection of
the difference between the ensemyfend its projection onto the reduced subspace is minimized
on average. It is a well-known result [20, 50, 65, 78] thatsbaition to the POD optimization
problem reduces to the eigenvalue problem

RO=A0, (4.4)

whereR is a self-adjoint and positive semi-definite operator with(i, j) entry given byR;; =
2 (x,x)) for 1 <i,j < K. Ifit is assumed thaR is compact, then there exists a countable set

of non-negative eigenvalues with associated eigenfunctiogs. It can be shown [50, 71] that

26



the set ofM eigenfunctions, or POD mode§g@, : i = 1,...,M} corresponding to th& largest
eigenvalues oR is precisely the desired basis. This is the so-called “netifosnapshots” for
computing a POD basis [88].

4.2 Approximation of solution in reduced basis(Step 2)

Once the reduced basis is calculated, the solutjbnis approximated as a linear combination of
the reduced basis modes (4.3}€p 3. Given this approximation, the following error formulanca
be shown for the POD [50, 65]:

%é Xi_i(Xi’(pi)(pi

whereJ = dim({x%,...,x¥}), and whereA; > ... > A; > 0 are the positive eigenvalues of the
operatoR (4.4).

2 J

Ak, (4.5)
k=FTe1

Typically, the size of the reduced basis is chosen based enexgy criterion. That iVl is selected
to be the minimum integer such that

Epop(M) > tol, (4.6)
where 0< tol < 1 represents the snapshot energy represented by the PGDdraski
M
M A
EPOD(M) = ZIK_J' I. (4-7)
|:1)\i

4.3 Projection (Step 3)

There are two approaches for performiatgp 3of the model reduction: continuous and discrete
projection. These approaches are described, as well asatechpnd contrasted, in the present
subsection. Stability-preserving methods for constngclROMs using these approaches will be
detailed in Chapters 5 and 6.

4.3.1 Model reduction via continuous projection

In the continuous projection approach [20, 57], the comtursusystem of PDEs (4.1) is projected
onto a continuous reduced test baalg 1M ; € R"in a continuous inner produ¢t, -), for example,
the usuaL? inner product

(x®.x@) = [ xXTx?da, (4.8)
Q

Weighted variants of the? inner product are considered later in this work.
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where thexy j(t) are the unknown ROM coefficients or modal amplitu@lsxsthab({,l =
( Xm,1, -+, Xwm )), to be determined in solving the ROM dynamical system (eetivelow).

Substituting (4.3) into (4.1), the following is obtained

_im,iam > (_im,@%) e (_im,i(tm) . (@.9)

Next, a reduced test basﬁq,li}i’v':l € R"is introduced, and the system of PDEs (4.9) is projected
onto the reduced test basis moszfor j=21,2,...,Min the inner product, -) to yield

M M M
_;XMJ O (¢, @) = (‘Pj,f (_;XMJ (U‘Pi))) + (‘Pjae/’/ (_;XM,i(t)‘pi>> ; (4.10)

for j =1,2,...,M. Typically, the reduced trial and test baggsand{; are chosen to be orthonor-
malinthe inner produgt, ), so that y;, ¢;) = &j, wheredj denotes the Kronecker delta function.
Invoking this property, as well as the linearity propertytloé operator?, (4.10) simplifies to

s j(0) = S i ©) (@) 2(0)) + (3.4 (S om0 @) ). (4.1)

for j =1,2,...,M. The equations (4.11) define a setMftime-dependent nonlinear ordinary
differential equations (ODEs) for the modal amplituags; (t) in (4.3).

4.3.2 Model reduction via discrete projection

In the discrete projection approach, the FOM ODE systen) (th2 PDE system (4.1) discretized
in space) is projected onto a discrete reduced test basigdisteete inner product. Suppose this
discrete inner product is the following weighte#linner product:

(xf\,l) ) xf\,z)) - xf\,l)T Px,(\lz), (4.12)

whereP € RN*N js a symmetric positive-definite matrix. L&y € RNM andWy € RN*M denote
the reduced trial and reduced test bases for (4.2), respBctiAssume these matrices have full
column rank, and are orthonormal in the inner product (4.$Q)thathK,| P®y = Im, wherely
denotes theM x M identity matrix. The first step in constructing a ROM for (Auaing discrete
projection is to approximate the solutigg(t) by (4.3). Substituting (4.3) into (4.2), and projecting
this system onto the reduced test basis, the followling M dynamical system is obtained:

Xm(t) = Amxm(t) +Nm (Xm(t)), (4.13)

where
Am =W PA®Y,  Ny(xm) = WHPN(®uxw). (4.14)
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4.3.3 Continuous vs. discrete projection

In the majority of applications of reduced order modelitgg, tliscrete projection approach is em-
ployed in constructing the ROM. This discrete approach hasitivantage that boundary condition
terms present in the discretized equation set are oftere(dipg on the implementation) inherited
by the ROM; that is, the ROM solution will satisfy the bounglaonditions of the FOM. Certain
properties of the numerical scheme used to solve the fulhdops may be inherited by the ROM
as well. The discrete approach can be black-box, at leasinfear systems ((4.2) withl = 0):

it operates on the matrik only, so that access to the high-fidelity code that was usegkto
erate this matrix or the governing PDEs is not required mlediA can be written out from the
high-fidelity code. In contrast, the continuous projectamproach is tied to the governing PDEs
— the continuous problem (4.9) needs to be translated toisiceete setting, e.g., by interpolating
the reduced basis modes and evaluating the continuouspnogucts in (4.11) using a numerical
guadrature [20]. Although the continuous approach is iahiy an embedded method, its similar-
ity to spectral numerical approximation methods allowsubke of analysis techniques employed
by the spectral methods community [16, 57].

Which of the two projection approaches described abovetifaaous vs. discrete projection) is
preferred depends on the application and the type of modektt®n approach sought (e.g., em-
bedded vs. black-box). The discussion in the remainderigtéport is intended to aid the reader
in selecting one of these approaches for his or her problenterest.

Note that, regardless of which projection approach is usduiid the ROM, the ROM dynamical
system will have the form (4.13), as (4.11) has this form wiveitten as a matrix problem. The
solution to the ROM is obtained by advancing (4.13) forwardime using a time-integration
scheme. This stage of the model reduction is known as thén®stage”. The preceding steps
(the collection of the snapshots used to build the reducsdsandteps 1-&bove) comprise the
“offline stage” of the model reduction.

4.4 Efficiency considerations

Itis straightforward to see that the projection of the lin@aerator in (4.1) or (4.2) can be computed
just one time prior to the online time-integration step @& thodel reduction; in particular, it need
not be recomputed in each time or Newton step of the modettexntu This is also the case when
the nonlinear operator/” has only polynomial nonlinearities. To see this, suppasé) has a
cubic nonlinearity:

N (x(1) =x3(1). (4.15)
The projection of (4.15) onto the reduced test basis modbers
M M M M
(‘.ij/V (I;XMI )) sznglnzlx t)Xm,m(t)Xm n(t) <wj7¢l ‘qu’n) ; (4.16)
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for j =1,...,M. The inner product tensc(rwj,tm (pmtpn> needs to be computed just once in the
offline stage of the model reduction.

In the case/” (and hencéN) has non-polynomial nonlinearities, the projection ostt@rmcannot

be pre-computed prior to the time-integration (onlinepstaf the model reduction. The cost of
performing this inner product i&'(N), whereN is the number of degrees of freedom in the FOM
and often very largeN >> M). Hence, “direct” treatment, or computation, of these mpreducts
would invalidate the termeducedorder model. A number of interpolation methods to overcome
this difficulty have been proposed, e.g., the discrete a@ogbinterpolation method (DEIM) [29],
“best points” interpolation [74, 75], or gappy POD [33].

In the nonlinear systems considered herein (the comptedsidvier-Stokes equations; Section
5.3), the equations and inner products are formulated shaththe resulting systems have only
polynomial nonlinearities, so that the projection of thenlreear terms can be computed once in
the offline stage of the model reduction and stored for usenduhe online stage. Hence, the
nonlinear interpolation methods mentioned above are rext.udote, however, that the efficiency
of the nonlinear ROMs may nonetheless be improved with paietion of the nonlinear terms.

This is because it requireg(MP+1) operations to evaluate the tensor arising from the prajacti

of the nonlinear terms (e.qg., the inner product ter(apjr, () q)mq)n) in (4.16) forp = 3), wherep

is the degree of nonlinearity in the functio#’. This can amount to a cost 6f(N) operations for
p >> 2 and moderatil.

4.5 Special case: linear time-invariant (LTI) systems

The POD/Galerkin model reduction approach described atsavew applied to a special kind of
system that will be considered in Chapter 6, namely a lineag-invariant, or LTI, system. A
system is called time-invariant if the output response fgiven input does not depend on when
that input is applied [11].

At the continuous level, an LTI system can be represented PRB@a (or system of PDES) of the

form
X(t) = Z(x(t))+Z(u(t)),
ylt) = L(x(t)),
in Q. Here,u € RP represents the vector of control variables, greRY is the measured signal or
output. The operata : R" — R" is a smooth linear spatial-differential operator, like limear
operator that appears in (4.1). The operai#ts RP — R" and.%, : R" — RY are smooth linear
mappings. The abstract operatdr§ 4. and.%, are introduced to keep the discussion as general
as possible, and used in subsequent analysis.

(4.17)

If the PDE system (4.17) is discretized in space using sonmeengal scheme, e.g., the finite
element method, the result is a semi-discrete LTI systerheofdrm:
xn(t) = Axn(t) +Bup(t),

yon(t) = Cxn(t). (4.18)
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Here,up € R is the discretized vector of control variables, o € R is the discretized output;
A e RNN B e RN*P andC e RO*N are constant matrices (in particular, they are not funetiai
timet).

The first two steps of the model reduction approach for (4at{%.18) are identical to the more
general nonlinear case considered above. The step thds dedlightly different (simpler) result
is the Galerkin projection step. Substituting (4.3) intdl{®, and projecting onto the reduced test
basis in the continuoug, -) inner product, invoking the orthonormality of the reducedttand
reduces trial basis functions, the following is obtained:

i) = 3w (85.2(@) + (W), Z(u(). 4.19)
yom(t) = Tiyxmi(t)ZLo(@,).

for j =1,2,...,M. The equations (4.19) define a setMftime-dependent linear ODEs for the
modal amplitudesy i (t) in (4.3), whereygwm is a reduced approximation of the output.

Similarly, substituting (4.3) into (4.18), and projectitigs system onto the reduced test basis in
the discrete inner product (4.12), the followikbx M LTI system is obtained:

xm(t) = Amxm(t)+Bmup(t),

yom(t) = Cmxm(t), (4.20)

where
Av =WhHPA®Y, By =W[PB, Cy=Coby. (4.21)

The matricesAyv, By andCy can be pre-computed and stored in the offline stage of the Imode
reduction — in particular, they need not be re-computed eh ¢izme step of the online time-
integration stage of the ROM. Note that, when written in m&twrm, the ROM constructed via
continuous projection (4.19) has exactly the form (4.20).

31



32



Chapter 5

Stable ROMSs via continuous projection

As stated in Chapter 1, the targeted application of the ROpta@arhes developed as a part of
this LDRD project is the compressible captive-carry prableFor this problem, the govern-
ing PDEs are the nonlinear compressible Navier-Stokesteqsain the high Reynolds number
regime. These PDEs are given in Section 5.3. A literaturechga8] reveals that the majority of
POD/Galerkin model reduction approaches for fluid flow argeldzon the incompressible version
of these equations. For the incompressible Navier-Stogaatens, the natural choice of inner
product for the Galerkin projection step of the model reucprocedure is the? inner product.
This is because, in these models, the solution vector istakée the velocity vecton, so that
llul| 2 is @ measure of the global kinetic energy in the domain, aedP@D modes optimally
represent the kinetic energy present in the ensemble froichvthey were generated. The same
is not true for the compressible Navier-Stokes equations. Hahaeegompressible fluid ROM is
constructed in th&? inner product, the ROM solution may not satisfy the cons@wmarelation
implied by the governing equations, and may exhibit nonstat instabilities.

It is shown in this chapter that the ROM instability probleesdribed above can be remedied by
designing a special energy inner product in which to do thiei®a projection step of the model
reduction procedure for compressible flow problems.

In Section 5.1, an energy-stability preserving model rédacapproach is developed for conser-
vation laws of the hyperbolic and incompletely parabolipay It is shown that a certain trans-
formation applied to a generic hyperbolic or incompletedygbolic set of PDEs and induced by
the Lyapunov function for these equations will yield a GriletROM that is stable for any choice
of reduced basis. It is shown in Section 5.2 that, for liné@EPR, the desired transformation is
induced by a special weightéd inner product, termed the “symmetry inner product”. The sym
metry inner product is given for several systems of physitarest: the linearized compressible
Euler equations, the linearized compressible Navier<&{a@quations, the wave equation, and the
linearized shallow water equations (Sections 5.2.1-5.2.3

In Section 5.3, attention is turned to developing energplstROMs for the nonlinear compress-
ible Navier-Stokes equations. Three forms of these equaioe considered:

e The standard form of the compressible Navier-Stokes egpusin the primitive variables,
density, velocity and temperature (Section 5.3.1).

e The so-called —form of the compressible Navier-Stokes equations, whedsspecific vol-
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ume instead of density and pressure instead of temperaiudehas a lower degree nonlin-
earity than the standard form (Section 5.3.2).

e The nonlinear compressible isentropic Navier-Stokes @ojusin the velocity and enthalpy
variables, valid for cold flows (Section 5.3.3).

An energy-based inner product for the third form of the euat of interest (the nonlinear com-
pressible isentropic Navier-Stokes equations) was inited by Rowleyet al. in [81]. This inner
product induces a meaningful physical quantity for theseadqns, namely the integrated stagna-
tion energy or stagnation enthalpy, and is reviewed herérastivates the formulation of aew
transformation and corresponding energy inner productHerfull compressible Navier-Stokes
equations in the standard primitive variable form. The nassociated with this inner product
induces a conserved quantity for a given flow: the total gndfghe projection step of the model
reduction is performed in the total energy inner produat,rissulting Galerkin ROM should pre-
serve the stability of an equilibrium point at the origin tbe compressible Navier-Stokes system.

Following a discussion of the compressible flow ROM code ({km@sSpi rit) developed as a

part of this project (Section 5.4), the performance of theous ROM approaches described in
this chapter is evaluated on several test cases in SectomGluding a viscous laminar cavity
problem. The chapter ends with a summary of some key obsamngadnd “lessons learned” from
the various numerical experiments performed. Also inallide discussion of prospects for future
work.

More detail on the content described in this chapter can bedan the following journal articles
and SAND reports, written during the time of this LDRD prdjg&9, 55, 35, 18, 60, 61].

5.1 A stabilizing transformation for conservation laws

In this section, an approach for building energy-stable R4 continuous Galerkin projection
is developed for PDE systems of the form:

. .09 0%
q+A'd—xi_K”70>qu,—

+Gqg=H. (5.1)

In (5.1),9 € R" denotes a vector of unknowrise R" is a source term;, Kj; andG aren x n
matrices, where ¥ i, j < d, with d denoting the number of spatial dimensions, arelN. The
matricesA;, Kjj andG could be a function of space, but they are assumed to be s{aatin
function of timet). The so-called Einstein notation (implied summation gueaded indices) has
been employed in (5.1) and subsequent expressions. Mosewr@tion laws, as well as many
PDEs of physical interest, can be written in the form (5.1)K|; = 0 Vi, j, (5.1) is known as a
hyperbolic system [46]. Otherwise Kfj; # 0, (5.1) is known as an incompletely parabolic system
[46].
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Suppose there exists a transformation

. n n
T: R" — R", (5.2)
qQa — Vv
such that in the new variablesthe system (5.1) has the form
. ov 0%v
ASZT kS 72T gSy=fS 5.3
VA X% ' 0% 0X; * ’ (5.3)
where:
e Property 1:The matricesAiS are symmetric for all K i <d.
e Property 2:The matricesKﬁ-’ are symmetric forall K i, j <d.
e Property 3: The augmented viscosity matrix:
K?1 ... K3,
KS=| : .. (5.4)
K§ - K3

is positive semi-definite.

Theorem 5.1.1Suppose a ROM for (5.3) is constructed using continuousri@al@rojection in
theL?(Q) inner product. Suppose the matrices in (5.3) safsfyperties 1-Zabove. Suppose also
that the reduced basis modes satisfy the boundary conslitibtine full order system, or they are
implemented weakly in the ROM in a stability-preserving Wwalyet vyy denote the ROM solution
to (5.3). Then the ROM is energy-stable with energy estimate

1
v (- T)ll2 < €2P5T | [vm (-, 0) |2, (5.5)
wherefsis an upper bound on the eigenvalues of the matrix
AAS  0°K3
BS=—L4+_— _2GS 5.6
0% O0X0X; (5.6)

Moreover, this energy-stability result holds famy choice of reduced basis.

Proof. To prove energy-stability of a ROM constructed for (5.3 hecessary to bound the energy
of the ROM solution to (5.3) witiS = O:

dEy
dt

d 2

gHVMHz

i (Ym, VM)

_ oAY

= vM,,,—tM) (5.7)
_ Sdv S 9%y

= (VM —APG K] axax — G

= — JoVRASGLOQ + [oViKS 5400 — o Vi GVMOQ.

1
2
1
2

1The reader is referred to [57] and Appendix A.5 for a disaussif stability-preserving weak implementations of
boundary conditions for ROMs constructed using the cowtirsyprojection approach. In general, a weak implemen-
tation of boundary conditions will be stability-presergiprovided the boundary conditions are well-posed.
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Each of the terms in (5.7) will be bounded separately. First,

— JoVmASGROQ =3 [, a%q (VhANVM) dQ+ 3 oV I/laa';' vmdQ

- 1 TAS 1 T 0AP (5-8)
= =32 JaaVMATNIVMAT + 5 o Viy 5 VM dQ.

In (5.8), the property that each of the matriaé\q%is symmetric has been employder¢perty J).
The symbol™ has been used to denote the bounda of Q.

Next, note that:

S0 _ ad (kS 9K gv
k3o =% (ka%) - (Slsm). 9
Then,
aKE
JoViKS Sep-0Q = Jo iy (KS %m0 ) dQ — fo vy G G002, (5.10)
Again, each of the two terms in (5.10) will be bounded segdyat
Jovife (K§§2) 90 = — Jo 5t KE 20 + o k5 Gaenar 5.1)
< JaaVi Kﬁ %\;M ndr,
provided the matrix (5.4) is positive semi-definiir¢perty 3.
Now for the second term in (5.10):
5K| i 1 p) 5K 92K
_va{A dx,J a\;M 0Q = _?fQW (v{,, dx' )dQ+ 2vaM axax deQ (5.12)

T 9K} aZK

In (5.12), the property that théﬁ matrices and therefore their derivatives are symmetriceas
employed Property 2.

Finally, (5.8) and (5.10) are substituted into (5.7). Thermary integral terms may be neglected
if the reduced basis modes satisfy the boundary conditiotisecboundary conditions have been
implemented in a stability-preserving way. The followingund is obtained:

191 |vulI3 %f ( )VMdQ+2vaMaanVMdQ JaVmGVMOQ (5.13)

whereBS is given by (5.6). Applying Gronwall’s inequality ((A.1) iAppendix A.1) to (5.13), it
is found that: .
[V (-, T)l[2 < €T jvm (-, 0) |2, (5.14)

wheres is an upper bound on the eigenvalues of the ma&fx5.6).

The proof of Theorem 5.1.1 is one of the new contribution$@f teport.
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Note that, ifG = 0in (5.1) and thé\; andK; matrices are spatially-constant, it follows tiiat=0

in (5.14). In this case, if the ROM for (5.1) is constructedha variablew, the ROM will be time-
stable as well as stable in the sense of Lyapunov, in addibiteing energy-stable. For linearized
conservation laws (e.g., the linearized shallow water #guos, the linearized compressible Euler
equations, the linearized compressible Navier-Stokeatems), the property th& = 0 and the
Aj andKjj are spatially-constant will in general hold if the base flevgpatially uniform.

5.2 Stability-preserving “symmetry inner product” for lin ear
conservation laws

A key property of systems of the form (5.1) is that they are matrizable [47, 20, 57]; that is, it
is possible to derive a symmetric positive-definite maltfisuch that:

e Property I: The matricedHA; are symmetric for all Ki <d.
e Property 2: The matricediK jj are symmetric for all K i, j <d.
e Property 3: The augmented viscosity matrix:

HK11 ... HKg

KH (5.15)

HKg1 ... HKgg
is positive semi-definite.

SinceH is symmetric positive-definite, the following defines a gafiner product:
1 @ — DT yn ()
(a¥.q )(va) _/Qq Hg@dQ. (5.16)

Following the terminology introduced in [20, 57], the inm@oduct (5.16) will be referred to as
the “symmetry inner product”. It is straightforward to skattthe following corollary to Theorem
5.1.1 holds.

Corollary 5.2.1: Suppose a ROM for (5.1) is constructed using continuousridalerojection in
the symmetry inner product (5.16). Supp®3eperties 1-3* hold. Suppose also, as in Theorem
5.1.1, that the reduced basis modes satisfy the boundaditwms of the full order system, or
they are implemented weakly in the ROM in a stability-presey way. Letqy denote the ROM
solution to (5.1). Then the ROM is energy-stable with enarglymate

1
llam (Tl m.g) < €2P T [lam (-, 0)l|1.0), (5.17)
wherefy is an upper bound on the eigenvalues of the matrix

O(HA) | 0%(HK )

BH
0% 0% 0X;

— 2HG. (5.18)
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Moreover, this energy-stability result holds famy choice of reduced basis.

Proof. Because of simple linear transformations, the proof is@gals to the proof of Theorem
5.1.1.

U

Again, in the case th& = 0 and theA; andK; matrices are spatially-constant, it will follow from
Corollary 5.2.1 that a ROM constructed in the symmetry irpreduct (5.16) will be time-stable
and stable in the sense of Lyapunov, in addition to beingggnstable.

It is interesting to observe that a Galerkin projection & ¢foverning (5.1) in the symmetry inner
product (5.16) is equivalent to a Petrov-Galerkin projacti Let @, for i = 1,...,M denote the
reduced trial basis vector for the solutign Performing a Galerkin projection of the equations
(5.1) onto the mode@, gives

/q)TH VL IS e dQ:/tpTHfdQ (5.19)
0 K 0% deidxj o) K ’

fork=1,...,M. Equation (5.19) is equivalent to a Petrov-Galerkin priagecof the equations (5.1)
in the regulai? inner product

/wT VL IR I dQ:/([JdeQ (5.20)
0 k I0Xi IJdXidxj' 0 k ’ '

where the reduced test basis functions are givegpy- He,, forallk=1,...,M.

5.2.1 Application to linearized compressible Euler equabns

Consider the linearized compressible Euler equationss& Bquations may be used if a compress-
ible fluid system can be described by inviscid, small-ampkt perturbations about a steady-state
mean flow. The equations are obtained from the full (nontineampressible Euler equations by
decomposing the fluid vectay(x,t) into a steady mean plus an unsteady fluctuation, i.e.,

Q(X,t) = C_I(X>+q/(X,t), (521)

and linearizing these equations around the steady meaustatq” = ( ug, Uz, us, {, p),
whereus, up andus are the three components of the velocity vecfois the specific volume (the
reciprocal of the density), anglis the pressure. The linearized compressible Euler equsatake
the form
'-I—A-a—q/—i—G '=0 (5.22)
q % q=>~0 .
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In 3D, the convective flux matrice&; in the linearized compressible Euler hyperbolic system
(5.22) are given by:

uu 0 0 0 ¢ uw 0 0 0 O
O uu 0 0 O 0O upu 0 0 ¢
A= O O0u 0 0 |,A2=|] 0 0 w 0 0|,

- 0 0 u O 0O ¢ 0 u O

yp 0 0 0 u O yp 0 0 w
- 0 0 0 0 (5.23)
0O u3 0 O O

As3=| 0 0 uw O C |.

0 0 -C uz3 O
0 0 yp 0 ug

The matrixG in (5.22) is a function of the gradients of the base flow:

Up U2 w3 p1 O
Upp U2 Uz p2 O
G=| ug1 uzg» ugz pz O |. (5.24)
¢r Co Gs —uj; 0
P1 P2 P3 wijj O
In the above matriceg; = Cp/Cy is the ratio of specific heats. The reader may verify thatef th

linearized compressible Euler system (5.22) is pre-miigtiiby the following symmetric positive
definite matrix:

p OO0 O 0
0p0 O 0
H=|00p 0 0 | (5.25)
0 0 0 a?y?p pa?
) (1+a?)
0 0 0 pa v

whereaq is a real, non-zero parameter, the convective flux mattiZesare all symmetric [20, 57].

5.2.2 Application to linearized compressible Navier-Sto&s equations

Consider the 3D linearized compressible Navier-Stokesios. These equations are appropri-
ate when a compressible fluid system can be described byugssmall-amplitude perturbations
about a steady-state base flow. As with the linearized cossjirie Euler equations, to derive these
equations from the full (nonlinear) compressible Navigskgs equations, the fluid vectofx,t) is
written as the sum of a steady mean plus an unsteady fluatu&ti®l), and a linearization around
the steady mean is performed. If the viscous work terms ayeeced from the equatiofgappro-
priate, for example, in a low Mach number regime), the reisudt linear incompletely parabolic

2To the authors’ knowledge, the viscous work terms are iatdyi neglected from the linearized compressible
Navier-Stokes equations by researchers studying en¢agplity of these equations [47, 4]. The omission of these
terms is justified only in the low Mach number regime, or in tase that the base flow is uniform. The extension of
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system of the form
. aqg 0 aq
/ A _+r _ = K v / = 0. 2
q + |‘9Xi 0Xi< .,0Xj)+Gq 0 (5.26)
If the fluid vector is given byq' = ( U, U, uz, T, p ) whereT and p denote the fluid
temperature and density respectively, the matrices thetaapn (5.26) are given by the expressions
found in [47], repeated below to keep this document seltaioed

m 0 0 R K & 0 0 0 O
0O 0 0 0 0 0 & o0 R X
T(y—1) 0 0 a O 0 T(y-1) 0 G O
5 0 0 0 4 O p 0 0 o
_ 5.27
uz O 0 0 O ( )
Oo®w O 0 0
Az=| 0 O Uz R Bpl ,
0 0 T(y—1) G O
00 p 0 G
Upp U2 Ups Rp1 % (Ujugi+ Ril)
U1 U2 U3 P2 % (L2 + RT>)
G=| U1 U2 Usgz  ;P3 % (Uls; +RT3) ; (5.28)
T1 T2 T3 (y—1uj %(LTi i+ (y—1)Tu)
pP1 P2 P3 0 Ui
and
2u+A 0 0 0 O 0O A 0O0DO
0O u 0 0 0 4 0 00O
Kiu=z%| 0 0 u 0 0|, Kp=zk]| 0000 0], (5.29)
0 0 O % 0 0O 0 00O
0 0O 0 0 O 0O 0 00O
0O 0A OO O uoo0O0
0O 0 0O0O A 0 0O O0O
Kis=s| # 0 0 0 0f, Ka=z| 0 000 0], (5.30)
0O 0 0O0O 0O 0 00O
0O 0 00O 0O 0 00O
U 0 0O 0 O 0O 0 00O
1 0 2u+A 0 0 O 1 0O 0A 0O
Kop=—=—— 0 0 g 0 0|, Koz= = O u 0 0 0], (531)
PRI 0 0 X o PRE1 0 0 0 0 0
0 0 0O 0 O 0O 0 00O

the energy-stability symmetrization approach presenézd to the linearized compressible Navier-Stokes equation
in which the viscous work terms are retained is the subjepregent research. The linearized compressible Navier-
Stokes equations with the viscous work terms retained aendh Appendix A.2.
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00puo0o0 00000
L [oo00o00 L [oowuoo
Ka=— A 00 00|, Kp=—|0ar 00o0]/, (5.32)
PRl 5 0 0 0 0 PRl 5 5 0 0 0
00000 00000
40 0 00
L low o oo
Kas===| 0 0 2142 0 0 (5.33)
PRl o0 0o X o
00 O 0 0

The parametefsappearing in the viscous stress matrisgsare: the Lamé viscosity coefficients
A andy, the thermal diffusivity, the Prandtl numbéd®r, and the Reynolds numbBe The reader

can verify that if the system (5.1) is pre-multiplied by tly@snetric positive definite matrix given
by

p OO0 O 0
0poO0O O 0
H=| 0 0 p 50R 0 1, (5.34)
000 7y O
000 O %

the “symmetrized” convective flux matricéA; and diffusive flux matricesiK; satisfyProper-
ties I'-3" in Section 5.2. HereRk denotes the non-dimensional universal gas constant.

Note that the symmetry transformation exhibited above tsuncque. For example, in [4], Abar-
banelet al. exhibit a transformation of the form (5.3) in the linearizadnpressible Navier-Stokes
equations written in the primitive variablgs = ( P, Uy, Uz, U3, P )

5.2.3 Application to other hyperbolic systems (e.g., shallv water equations,
wave equation)

It is straightforward to derive the symmetrizéifor a number of other physical systems commonly
of interest to the scientific community. The symmetrizerstham such systems are given in Table
5.1: the 1D wave equation and the 3D linearized shallow wejaations. For the former equation,
the wave equation, the original second order RDEazg—i‘; wherea € R denotes the wave speed,
has been written as a first order system. The latter set of Pidasely the 3D linearized shallow
water equations, are obtained from the full (nonlinear)lsthewater equations by decomposing
the fluid vectorg(x,t) into a steady mean plus an unsteady fluctuation (5.21), aedriizing the
full shallow water equations around the steady mean sfat€he variablep denotes the local

3Note that Section 5.2.2 give the dimensionless form of thediized compressible Navier-Stokes equations. The
details of the non-dimensionalization of these equati@rste found in Appendix A.3. The gas const&in the
convective flux matrices (5.27) is the non-dimensional gasstant, given by (A.7). The dimensional gas constant has

J »
the value 81 TR for air.
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height of the fluid above the equilibrium depth, and the \@esu,, up, andus are the components
of the fluid velocity vector [90].

Table 5.1. SymmetrizeH for several PDEs
Name | 1D wave equatior) 3D linearized shallow water equations

Variables qT:<u, %) q'=(uy, Uy, Uz @)
PDEs q=A,% d+ASL +Gq =0
iz 0 0 1
A <0a2) 0Ot 0 O
1 10 0O 0 u O
0 0 u
iz 0 0 O
0 0 1
Az - 0 0 G O
0O ¢ 0 Ww
iz 0 0 O
0z 0 O
As - 0 0 g 1
0.0 ¢ G
¢ 000
’ (10) 0 ¢ 00
0 a? 0 0O
0001

5.3 Nonlinear conservation laws

Attention is now turned to nonlinear conservation laws, agrthe nonlinear compressible Navier-
Stokes equations of interest in the targeted captive-egpjication. Three forms of the equations
are considered: the full compressible Navier-Stokes égustthe —form of the full compressible
Navier-Stokes equations, and the isentropic compreshialger-Stokes equations. The notation
‘ i" denotes differentiation with respect to tie spatial variable, i.ea; = 3—2' and ‘¢’ denotes

differentiation with respect to, i.e., a; = %‘, for a given variablea = a(x,t). As before, the

Einstein convention (implied summation on repeated irgjibas been employed.
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5.3.1 Full compressible Navier-Stokes equations

The full compressible Navier-Stokes equations in dimams&s primitive variable form are given
by the following system of PDEs [31]:

f¢+Rﬂh+wa = 0,
Ui Ui ilj + - (pT) i — &Tii;i = O
PUit + PU; j ]+yMr2ef (p ); Relil,] , (5.35)
y(y_l)Mre
pTV*PWTi+(V—1)WJDT—(ﬁ%Q(KT)J"(__ﬁa_l)“uﬂj = 0,

wherei, ] = 1,2,3 (in three spatial dimensions) and there is an implied suthoma&n repeated
indices. The first equation in (5.35) is the continuity egqugtthe second three equations are the
momentum equations; the final equation is the energy equafitiere are five unknowns: the
densityp, the three velocity components, u, andus, and the temperatufe. ReandPr denote
the Reynolds and Prandtl numbers respectivglgienotes the ratio of specific heald;e is the
reference Mach number used in the non-dimensionalizatizhe symboltjj denotes the stress
tensor, given by:

Tij :u(uivj—l—uu)-l—)\uk,kdj, (5.36)

fori, j,k= 1,2, 3, wheredy denotes the Kronécker delta, ancandA are the Lamé coefficients,
typically assumed to satisfy the so-called Stokes’ retatio

A+§u:0 (5.37)

The symbok denotes the thermal diffusivity, given by

_ K%
K= Pr (5.38)
wherec, denotes the specific heat of the fluid at constant pressuderiving (5.35), the ideal gas

law

pT
2 )
ref

where p denotes the fluid pressure aRds the universal gas constant, has been employed. As-
suming constant viscosities and diffusivities (saamark 5.3.below), the equations (5.35) have a
cubic nonlinearity.

D= pRT — (5.39)

Remark 5.3.1: In general, the viscosity coefficientsandA, and the thermal diffusivitx need
not be spatially constant. A commonly used expressiomfsrthe Sutherland viscosity law [89],
which is based on the kinetic theory of ideal gases and atizéeantermolecular-force potential.
This law states that is related to the temperatufeas follows:

C1T3/2
T+ Co’
4If urer denotes the reference value of the velocities, @gdis the reference speed of sound, the reference Mach

number is given byM et = Uref/Crer. FOr a detailed discussion of the non-dimensionalizatiothe compressible
Navier-Stokes equations, the reader is referred to Appehdi.

p=u(T) (5.40)
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for some constantS;,C, € R. The ROM code written as a part of this LDRD project, known as
Spirit (Section 5.4), allows the specification of a linearized igref Sutherland’s viscosity law
(5.40) for the linearized compressible Euler and Naviek8$ equations, but not for the nonlinear
variants of these equations, for which a constant viscasigssumed. The capability to use a
viscosity of the form (5.40) may be added to the code in theré&utThe primary difficulty of using
(5.40) comes from the fact that this expression containsnapodynomial nonlinearity, meaning
the projection of this term would need to be handled usinges&md of interpolation to keep
the ROM efficient, e.g., the discrete empirical interpa@atmethod (DEIM) [29], “best points”
interpolation [74, 75], or gappy POD [33].

5.3.2 Full compressible Navier-Stokes equationg;—form

The equations (5.35) can also be written in the so-ca&liddrm, where{ = 1/p denotes the fluid’s
specific volume:

Ci+djui—Cujj = 0,
Uit + Ui Ui +pi— gel Ty = O, (5.41)
1
P1+UjPj + Wi P~ (pire) (K(pz)7i),j_<)/l?—e3uivjrij =0

fori, j =1,2,3 (in three spatial dimensions). The first equation in (5ig1)e continuity equation,
followed by the three momentum equations, and the energatiesu The symbop denotes the
fluid pressure. The stress tenggris given by (5.36), and the symbd®s, Re , A, k andy are
the same as before.

The upshot of th& —form of the compressible Navier-Stokes equations (5.4#&) the standard
form (5.35) is (5.41) has only a quadratic nonlinearity, ve@s (5.35) has a cubic nonlinearity.
Hence, both the offline and online stages of a projectiordbasodel reduction algorithm for
(5.41) will be cheaper to evaluate than the offline and ondiragies of a projection-based model
reduction algorithm for (5.35).

5.3.3 Isentropic compressible Navier-Stokes equations

The last version of the compressible Navier-Stokes equaiwonsidered is an approximate form
of (5.35) and (5.41), namely the isentropic version of thexggations. The isentropic compressible
Navier-Stokes equations are valid for cold flows (flows forickhl,,a = T and the temperature
gradients are small) at a moderate Mach number. The iseofepumption is consistent with the
neglect of the viscous dissipation and heat conductiong@nnthe energy equation, and constant
viscosities in the momentum equations. Unlike the full d¢iuns (5.35) and (5.41), the fluid
vector consists of only four unknowns in 3D: the enthalpyand the three components of the
velocity vector,u; for i = 1,2,3. In dimensionless forf) the isentropic compressible Navier-

5The dimensional version of (5.42) can be found in [81]. THenence values used in the non-dimensionalization
are given in Appendix A.3.
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Stokes equations are as follows:

he+uihi+(y—Dhu; = 0,

5.42
Uj,t‘f‘Uin,i‘f‘hj—Rier,ii = 0, ( )

for j = 1,2,3. Like the{—form of the full compressible Navier-Stokes equationd{pbut un-
like the original form (5.35), the isentropic Navier-Stgkequations (5.42) have only quadratic
nonlinearities. The enthalgyis related to the speed of sound according to the followitegion:

¢ = (y—1)h. (5.43)
Sincec? = pr' the following equation relatdsto p andp:

yp
p(y—1)

h= (5.44)

5.3.4 Energy inner products for the nonlinear compressibléNavier-Stokes
equations

Some energy inner products for the various forms of the neali compressible Navier-Stokes
equations given above are now derived. An essential pyppéthe solution to these fluid equa-
tions is that the total system energy,

Er = / (pe-l— }puiui) do, (5.45)
0 2

is, in the absence of external sources, non-increasingiet ti.e.,
dEr <
dt —
The first term in (5.45) represents the internal energy, hedsécond term represents the kinetic

energy, withe denoting the internal energy per unit mass of the fluid. Thengjty e is related to
the pressure, density and temperature (assuming as bleéakeal gas law (5.39)) via the relation:

0. (5.46)

p=(y—1lpe T=yy—1)M2e (5.47)

SinceEr >0 anddd—Etr < 0, the energy (5.45) satisfies the definition of a Lyapunoxtion for its
corresponding fluid system (Theorem 3.2.2 in Section 3.2)XhB discussion in Section 3.2 as well
as [81], ifaninner product that induces the energy (5.463%&l to build the ROM, then the stability
of an equilibrium point of the system at the origin should besgrved by the Galerkin projection
step of the model reduction. This is a necessary, althouglala@ys sufficient, condition for
time-stability of a nonlinear ROM.

60r, equivalently, the entropy is non-decreasing in timetipe second law of thermodynamics, a.k.a. the Clausius-
Duhem inequality [55].
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It is noted that the use of an energy inner product to do ther&ial projection step of the model
reduction does not guarantee that the stability of an dajuilin point other than the origin is
preserved, nor does it guarantee that the stability of laydes is preserved [81]. Moreover, an
equilibrium point of a dynamical system is not necessaniyattractor of the system. Hence, a
ROM constructed in an energy inner product may not presamagtaactor for the compressible
Navier-Stokes equations. It is also noted that, in someatsitns, an energy-based inner product
may not be appropriate, e.g., for jet noise problems in wthehacoustic waves of interest contain
a very small fraction of the energy [81].

Isentropic compressible Navier-Stokes equations

In [81], a physically meaningful energy inner product foe tisentropic compressible Navier-

Stokes equations (5.42) is introduced. This inner prodsiceviewed here, as it motivates the
definition of an energy inner product for the full compretesi¥avier-Stokes equations in the prim-

itive variables (5.35). The inner product requires firsteamsformation of the equations (5.42) into
a new set of variables, and is based on either the stagnatibalpy or the stagnation energy. The
transformed variables acgethe speed of sound, and the three velocity compongifdsi = 1,2, 3.

In non-dimensional form, the nonlinear isentropic comgitde Navier-Stokes equations in these
variables are:

Ct+UiC.i+y%1Cu.i = 0,
’ ’ ’ 5.48
U+ Uiy, + 7276C ) — glji = O, (5.48)
again forj = 1,2, 3. In [81], Rowleyet al. define the following inner product for (5.48):
W @) = [ (\®@ 2 @
(q No| )SEa_/Q<u' Uj +y_1c ¢ )1 dQ, (5.49)

induced by (5.49) represents the stagnation enthalpy; wherl/y, the norm induced by (5.49)
represents the stagnation enétgy

.
whereqt) = ( c®, uP, uP, ud ) and similarly forq?. Whena = 1 in (5.49), the norm

Note that the nonlinearities in the transformed equatiém() are only quadratic. Let

%

o= % | (5.51)
5o
2
’Note that, for the isentropic compressible Navier-Stokpsagions, the stagnation energy
1
Es:/ (e—i——uiui) do, (5.50)
0 2

and total energy (5.50) are equivalent (and similarly fags@tion enthalpy and total enthalpy). The second term in
(5.50) is commonly referred to as the specific energy.
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denote thé&!" POD mode. Projecting (5.48) onto this mode in the inner pco@L49) and inte-
grating the viscous term by paftgives:

2 -1
(5.52)
fork=1,...,M. Upon discretization, (5.52) gives rise to a nonlinear matroblem of the form:

M M M

. 3

it S Akt Y S Agpwmioaa =0, (5.53)
k=1 k=1g=1

fori =1,...,M, assuming the POD modes have been normalized with resptw toner product
(5.49). The cost of applying a time-integration scheme t63p(the online stage of the model
reduction) iso’(M3).

Full compressible Navier-Stokes equations

As mentioned at the beginning of this chapter, a ROM for (5c®Bistructed in the? inner product
is not guaranteed to give rise to an energy-stable fornarlatifo remedy this problem, an inner
product whose norm is the total energy of the fluid system5(big formulated here. Before
defining the said inner product, a transformation of the g#qna (5.35) is required. Letbe a new
variable, given by

a’=p. (5.54)

Now, define the following transformed fluid vector:

a a
b1 aup

q=| b | =| awn | eR®. (5.55)
b3 alz
d ae

In the transformed variables, the (non-dimensional) casgible Navier-Stokes equations (5.35)
are as follows:

2a‘33+053ah> 0
Xi )
d(ab d(bjby oTjj
R SRS i
d(ad) | a(byd ab b _
2+ % +(y_l)g<adx: dex,)‘WyRed% (% <ag_>(<jj_dg_>2>)_R_e¥Tu (a%—b.ﬁ—Z) = 0
(5.56)
where
H ob; da db, da A dbk Jda
Tjj = —b; — b i — —b, 5.57
= { ax  Pax "%k Piax| %z (qax, Pax ) (5:57)

8As before, the boundary condition terms are omitted fronRB# equations, which in general is justified if the
POD modes satisfy the FOM boundary conditions; see [57] guukAdix A.5.
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fori, ) =1,2,3. (5.56) can be simplified as follows:

222 +af +b32 = 0,
a%+%big—tx’j—2iabibjg—g+bj§—*x’;+(y—1) [ag_g+dg_ﬂ
L (5.58)
ob;
A% 1028 Ly B db g2+ (y- 3% + it [ (gt —age )
—Riea—lz'l'ij (ag—g—big—;}) = 0,
fori,j=1,2,3.
Consider the following inner prodtitt
1
(a¥,q®)_= / 5 (aVd® +a@d® 155 ) do. (5.59)
E 02
The norm induced by the inner product (5.59) is:
lallg =(a.9)¢
= Jo (ad+ 3bibi) dQ
= [o (a%e+ 3a%uiu;) dQ (5.60)
= Jo (pe+ %puiui) dQ
=Er.

That is, the norm induced by the inner product (5.59) is th& energy of the fluid system. If the
Galerkin projection step of the model reduction procedsmoine in the inner product (5.59), the
resulting ROM should preserve the stability of an equilibripoint of the system at the origin.

The projection of the equations (5.58) onto the reducedsbasides in the total energy inner
product (5.59) is now derived. Let
%

A

o= g2 |. (5.61)

gq(d

2

7S

denote th&!" POD mode.

Consider first the inviscid variant of (5.58Y & A = k = 0). The first step is to convert the non-
polynomial nonlinearities in (5.58) into polynomial onék do this, the momentum and energy
equations are each multiplied lay Doing so, and projecting (5.58) onto the mode (5.61) in the
total energy inner product (5.59) gives:

Jo (2232 +a32 + 5132 ) gfdo
oy 2901 b b bj
+fo (azﬁJr abiaggt — 3bibj 52 +bjagd + (v— 1)a[ag—g +dg_gD @dQ (5.62)

ob;
Jo (aZ% +ab; g2 — (y—1)db; 2+ (y—3) daa—xj> GdQ = 0.

91t is shown in Appendix A.4 that (5.59) is a valid inner protiuc
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When discretized, (5.62) will yield a nonlinear system o tbrm:

M M M

Z Z M X o+ Z Z Al kv, + > Z 3 Ao =0, (5.63)

fori =1,...,M. The entries of the tensoMi(kSci, Ai(lf’gI andAi(lf’c)1r appearing in (5.63), referred to
as the third order mass tensor, the third order ROM coefficearsor, and the fourth order ROM
coefficient tensor, respectively, can be deduced from [5&8® are not given here for the sake of
brevity. All mass and ROM coefficient tensors in (5.63) capteecomputed in the offline stage of
the model reduction, and stored for use during the online-imiegration stage of the ROM. Note
that, in the online stage, it is necessary to evaluate téreszior products involving these mass and
ROM coefficient tensors, which requirég M%) operations (Section 4.4). Ideas for reducing this

computational cost are discussed at the end of this subsecti

For the more general viscous case, to remove the non-polghomnlinearities in (5.58), the
momentum equation needs to be multiplieday and the energy equation la§. Doing so, and
projecting these equations onto (5.61) in the inner pro(uéB), following an integration by parts
on the viscous tern§, gives:

Ja <2aat +adl +b g2 ) @ldQ

+ o <a4%+ b SZEJ la?bib; 92 +b,a3‘9b' +(y—1)as [a(,xi +d2a ]) qf‘dQ
b
+fcz%e<3‘ﬂ< a2 aa +a3 s )r.,dQ (5.64)

o (5 e g () 2+ - ) 62 g
+ Jo K (az‘m +4gtag?) (agd —d ‘9a) d0 — J A2t (agl —bi22) gpdQ =0,

When discretized, (5.64) will yield a nonlinear system @& form:

3 : 6 :
Sheq Zaﬂzl Mi(l<3|XM,qXM,k +30 Zaﬂzl PRARDILED Y Mi(l«irstXMquMJxMﬁXM XMk
7 .
EDYEPIED LD I DT D Y I Mi(ko)nst pM,aXM,r XM, sXM,EXM, pXM k
3 4
+3k Z('\q/lzl Ai(kéXM,kXM,q +3y Zaﬂzl Sy Ai(k(;rXMkaMﬂXMJ (5.65)
5 .
6
M <M <M <M <M <M A7) -0
T 2k=120g=12r=125=12t=12 p=1 Aiqust pM kXM, g XM, r XM sXM XM, p = Y,
fori =1,...,M. As before, the mass and ROM coefficient tengdts andM (K appearing in (5.65)
are not given here explicitly for the sake of brevity, but teninferred by comparing (5.65) with
(5.64). The reader can observe that (5.65) has up tb arder mass and ROM coefficient tensor.

Like for the inviscid case (5.63), all mass and ROM coeffittensors appearing in (5.65) can be
pre-computed during the offline stage of the model reduction

1ONeglecting the resulting boundary integrals is justifiethd POD modes satisfy the boundary conditions of the
governing PDEs; see Appendix A.5 and [57].
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Per the discussion in Section 4.4, the cost of evaluatingethgor/vector products arising when
(5.65) is integrated forward in time i&(M’). This cost is substantial even for smbl, e.g.,

M = £(10). To restore efficiency of the ROM, the nonlinear terms in 4% &n be interpolated
using well-established methods such as DEIM [29], “beshisdiinterpolation [74, 75], or gappy
POD [33]. As the objective here is to evaluate the accuracR@Ms constructed in the total
energy inner product (proposed here for the first time), tdinear terms in (5.65) are handled
directly, thatis, without interpolation. The addition atérpolation capabilities to tigpi ri t code
(Section 5.4) for the purpose of improving the efficiencytef honlinear ROMs implemented there
may be the subject of future work.

Note that no energy inner product is proposed fordh&rm of the compressible Navier-Stokes
equations (5.41). Deriving such an inner product seanpsiori a promising path, as thé—
form of the equations have only quadratic nonlinearitiasteéad of cubic nonlinearities (5.35).
Unfortunately, the equations are not amenable to such aulatian if a projected system having
only polynomial nonlinearities is desired.

5.4 Implementation/Spirit code

A parallel C++ code that reads in the snapshot data writtea tigh-fidelity code, assembles the
necessary finite element representation of the snapshdtscmputes the numerical quadrature
necessary for the evaluation of the inner products has be#tenvby the authors. The code,
known asSpirit, is keptin agi t repository on the Sandia Restricted Network (SRN) Common
Engineering Environment (CEE) space, and can be clonedtfi@mepository using the following
command:

git clone user @eer wsXXXXX: / proj ect s/ aerosci ences/repo/git/spirit

To ensure software quality, the code is pulled from its répog compiled and tested every night
using acr onj ob on the PI's Linux workstation.

The stability analysis in this chapter has assumed thantkgrals resulting from the projection of
the governing equations onto the reduced basis modes dtamaexactly in continuous form.
This continuous result can be translated to the discretegehrough the use of high-precision
numerical quadrature as follows. First, the snapshots hed”OD basis modes are cast as a
collection of continuous finite elements. It is then possitd construct a numerical quadrature
operator that computes exactly (with respect to the finiéeneint representation) all continuous
inner products arising from the continuous Galerkin prigecof the equations onto the POD
modes.

For concreteness, the numerical quadrature is illustriagzd on the simpler case of linearized
equations, e.g., the linearized compressible Euler orédesiokes equations. By the discussion in
Section 5.2, it is necessary to compute numerically integrthe form:

1 g®@ — OTHg®@
(a%.a®) ,, o = [ ¥ THgPag, (5.66)
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whereH is the symmetrizer for the governing system. Suppose, witlogs of generality, that the
finite element shape functions are chosen to be bilineardiBueete representations of the vectors
g andq'? are denoted by"® andg™?@, respectively. The length of these vectors is equal to the
number of mesh nodes times the dimension of the vectat, Let HY be ther x r element inner
product matrix, taken to be piecewise constant over eachezie Then, the formula for numerical
integration of (5.66) can be written as
D q® — g"@T\ywgh@ 567

(q . )(va g S (5.67)
whereW is a sparse block matrix comprisedifc N blocks of dimensiom x r. The(k, )" block
of this matrix given bywy |, where

el

My 4
Wi = 3 HE > N (Xje)Nig (X ) . (5.68)
e=1 =1

Here, the outer sum is over the elements connected t& the nodal “edge”; thewj, are the
integration weights and theg, are the integration points.

All calculations are performed in parallel using distrigditmatrix and vector data structures and
parallel eigensolvers from the Trilinos project [49]. Trarallelismtt in Spirit allows for large
data sets and a relatively large number of POD modes.| Theesh finite element library [63]

is used to compute element quadratures. The online tinegriation of the ROM system (4.18)
(with the mass tensors and ROM coefficient tensors compuitddvgpi ri t and written to disk)

is performed using a fourth-order Runge-Kutta scheme in MXB.

TheSpirit code contains several linear as well as nonlinear compled$ilid PDE sets, which
can be projected onto the POD reduced basis modes in seneealproducts. The physics and
inner products available igpi ri t at the time this report was written are summarized in Tal#te 5.
For the linearized equations, the base flow to linearize glody), can be set either to a spatially-
constant value (for uniform base flow), or read in from filer (flon-uniform base flow). Note that
the linearized compressible Navier-Stokes equatior@pinit include the viscous work terms
(A.2) (Appendix A.2). The base flow is not needed in the caseaofinear equations, as the ROM
(and hence the POD basis) is constructed for the full statorg(x,t) in this case. The option to
run dimensionally as well as non-dimensionally is avagabh general, the latter is preferred, as
the resulting systems are often better scaled. Additiomaébilities available iSpi ri t include:

e The capability to specify various boundary conditions .(eng-penetration boundary condi-
tion, sponge far-field boundary conditions; Appendix Arbjhe ROM.

e The capability to add source terms (e.g., body force acnafppendix A.11) to the ROM
eguations.

It is straightforward to add new physics and boundary camuft to Spi rit with an arbitrary
number of dofs per node.

lINote that, at the present time, the input/output (I/O$piri t is serial: the snapshots and mesh data are read in
on processor 0, then distributed to the other processodsdjamlarly for the output). All other operations, e.g., the
POD basis calculation and Galerkin projection, are fullyatial.
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Table 5.2. PDEs/inner products available §pi ri t

PDEs regimes # dofs/node unknowns inner product
linearized L2
compressible inviscid 5 uy, Uy, ug, ', p/
Epuler 1, Uz Us, {7, symmetry
linearized . 2
. viscous P L
compressible inviscid 5 up,Us,us, T, p svmmetr
Navier-Stokes y y
isentropic .
. viscous >
compressible . " 4 U1, U, Uz, h L
. inviscid
Navier-Stokes
isentropic . ]
) viscous stagnation energy
;Z\Tsrresstsoﬂes inviscid 4 Uz, U2, Us, © stagnation enthalpy
{—form .
. viscous >
compressible inviscid 5 Uy, U2,Us3, ¢, p L

Navier-Stokes
compressible  viscous

2
Navier-Stokes inviscid S U, Uz, U3, T, p -
compressible  viscous _ 13 _

Navier-Stokes inviscid S a=p {bi}, d=ae total energy

* The linearized compressible Navier-Stokes equatior8pirn i t include the viscous work terms (A.2) (Appendix A.2).

One reasordpi rit is designed as a stand-alone code is so that it can be syiddlomith any
high-fidelity CFD code that can write out a mesh and snapsata stored at the nodes of this
mesh. At the time of publication of this repo8pi rit has been run with two high-fidelity flow
solvers:AERC- F andSI GVA CFD. TheAERO F simulation code is an arbitrary Lagrangian-Eulerian
finite volume code that can be used for high-fidelity aerdelanalysis [69, 34]SI GVA CFDis a
Sandia in-house high-fidelity finite volume flow solver. Thade is derived fronhESLI E3D, an
LES flow solver originally developed at the Computationaf®uoistion Laboratory at the Georgia
Institute of Technology, and has direct numerical simolaiDNS) as well as LES capabilities.
For a detailed description of the schemes and models impiedevithin LESLIE3D, the reader
is referred to [38, 37].

More information about th8pi rit code can be found in [35, 19].

5.5 Numerical results

The linear as well as nonlinear model reduction methodslddta the previous sections are now
tested on three benchmarks, summarized in Table 5.3.
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Table 5.3.5pirit test cases

Name | FOM code | FOM physics | Dynamics
2D inviscid pulse AERO F Linearized compressible Euler linear
2D viscous pulse | SI GVA CFD | Nonlinear compressible Navier-Stokes linear

Viscous laminar cavity SI GVA CFD | Nonlinear compressible Navier-Stokesionlinear

The first two benchmarks, the 2D inviscid and 2D viscous ptese¢ cases (Section 5.5.1 and
5.5.2), have effectively linear dynamics and are consitléoe code verification purposes. The
third benchmark (Section 5.5.3), the viscous laminar gaeist case, is a problem whose solution
exhibits inherently nonlinear dynamics, namely vortidest tonvect. The domain of interest for
this problem is an opefi—shaped cavity, precisely the geometry relevant for thgetad captive-
carry application (Figure 1.1(c)). The problems are runarafiel on either the Red Sky cluster or
a CEE Remove Graphics Workstation, both at Sandia.

In calculating the POD basis for the vector-valued fluid figldor fluid fluctuationq’, in the
linear case), there are two approaches. The first approadohcalculate a separate scalar basis
for each of the variables comprising(or ’). The second approach is to build a vector-valued
basis{ @, € R”}l':"zlfor g (or '), wheren is the number of dofs (PDEs) per node (in general 5

in 3D, except for the case of isentropic equations, wimete4). The latter method involving the
vector-valued basis is taken here. Previous work [81, 5gyests that the scalar-valued method
appears to offer no advantages over the vector-valued mhetie requires higher order models.

Among the results shown for the three test cases are tinarieisbf tha!” ROM modal amplitude
compared to the projection of the FOM CFD simulation ontoith®OD mode. Mathematically,
the figures shown compare as a function of time

xmi(t) vs.  (drom, @), (5.69)
for 1 <i <M, wheregqrowm is the high-fidelity CFD solution from which the ROMs are consted.

Also reported are the relative errors in the ROM solutionthwespect to the snapshots, i.e.,

5 2| | grom(ti) — am () |2

, (5.70)
5 1| | grom(ti)] |2

éﬁrehq =

wheregm (t) = SN, Xw k@ (t) andgrom(t) denote the ROM and FOM solutions (respectively) at
timet, andKnaxdenotes the integer such thiatax = Kmatsnap WhereTmaxis the maximum time
until which the ROM is run, and\tsnap is the time step between snapshots. The ngrrl; in
(5.70) is the discretk? norm.

Note that, for all three test cases, emphasis is placed andegng a given CFD solution for
a single set of flow conditions in a stable and accurate fashithis is viewed as an essential
prerequisite for applying the method to more complex situmst such as building ROMs valid
across a parameter space or range of flow conditions, andgifog the ROMs to do analysis (e.g.,
flow control, uncertainty quantification).
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Note also that the ROMs tested do not include an implememtati the boundary conditions, al-
though some boundary conditions are availabl&pnrit, as discussed earlier. For the viscous
problems, the POD modes satisfy strongly the no-slip andtediic wall boundary conditions at
the cavity walls, meaning the ROMs inherit automaticallysgh boundary conditions from their un-
derlying FOMs. Itis conjectured that the inclusion of afietd non-reflecting boundary condition
in the ROMs may improve the models’ stability and accuracyg@ndix A.5).

5.5.1 2D inviscid pulse in uniform base flow

The first benchmark is a linear inviscid problem. The tes¢¢agolves the propagation and reflec-
tion of a cylindrical acoustic pulse from two parallel wailisa uniform base flow. The governing
equations are the linearized compressible Euler equati®ertion 5.2.1). The base flow velocity
is taken to be uniform in th&-direction with free-stream Mach numbkt, = u—cl =0.25. The
initial condition at timet =0 is

/ / /
5%:o.1|v|3,exp(—((xl—10)2+(Xz+1)2)>, %:—5%, Up=Up=Us=0. (5.71)

The exact solution for this IBVP can be found in [91].

TheAERO F node-centered finite volume code [34] is used to generatadgeshots from which the
ROM POD bases are constructed. This high-fidelity solveumsin the linearized compressible
Euler regime, as the problem is inviscid and the dynamicdiaear. The numerical solution is
performed on a 3D rectangular prism domain, with extedtX < 20,—-5<x, <5,0<x3 <1,
discretized by finite volumes that are interconnected tenfarmesh of 1,052,551 unstructured
tetrahedral elements (with a total of 197,226 nodes). Séip boundary conditions are applied on
the constank, andxs boundaries in the high-fidelity code. The high-fidelity siation is run for

a non-dimensional time dfnax = 6.4, using 624 time steps. Snapshots are saved every four time
steps beginning at time= 0.57 and ending at= Tmayx to Yyield a total ofKnax= 157 snhapshots.
These snapshots are used to generate 12 mode POD basesdridhs inner products evaluated.
It is found that the 12 mode bases capture approximatel\¥98i4he snapshot energy (4.6). The
FOM as well as the ROMs are run non-dimensionally.

Eight of the ten ROM approachssummarized in Table 5.2 are evaluated. As this is an inviscid
problem, the viscosity coefficients in the compressibleiBla8tokes equations are all set to zero:
U =A =k =0. Since the high-fidelity code solves theearizedequations and the dynamics
are linear, it is expected that the linearized ROMs will b&edb accurately capture the solution
to the problem. Note that, because the base flow is uniformGtmatrix in (5.22) vanishes,
and theA; andK;; matrices appearing in these equations are spatially aumnsitafollows from
Corollary 5.2.1 that the linearized symmetry ROMs shoultiine-stable and stable in the sense of
Lyapunov. The nonlinear ROMs, which should also be able pooduce reasonably the solution
dynamics, are tested as a verification of the implementatidine nonlinear physics iipirit.

12The ROMs based on the linearized compressible Navier-Stefjgations are not considered; considered instead
are ROMs based on the linearized compressible Euler equsais the problem of interest is inviscid.
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First, the stability of the two linearized inviscid RO#sn Table 5.2 is evaluated using Theorem
3.2.3, that is, by checking the sign of the real parts of tgemralues of the ROM system matrices
Apm. The maximum real parts of the eigenvaluesi\gf for theM = 12 linearized POD/Galerkin
ROM s are given in Table 5.4. The reader can observe thatROM is mildly unstable based on
the eigenvalue criterion for stability. The symmetry ROKIcDntrast, is stable.

Table 5.4. Maximum real part of eigenvalues 8fy, for M = 12
mode linearized ROMSs constructed in theand symmetry inner
products (2D inviscid pulse problem)

Physics | Inner product] max{ReAi(Am)]}
. . . L2 0.03
Linearized compressible Eulgr
symmetry 0.0

Next, the time history of the modal amplitudes; is compared to the projection of the POD modes
onto the snapsho{$icep, @,) for i = 1,2 (5.69). Figure 5.1 shows these quantities as a function
of time for the nonlinear compressible Navier-Stokes ROMstructed in the total energy inner
product. The reader can observe that the agreement isextelihich indicates that the ROM can
reproduce well the snapshots from which it was construadilar figures were produced using
the remaining seven ROMs evaluated, and are not shown hetteefsake of brevity.

x 10~3M=12 mode nonlinear total energy ROM

10

— Qo ®e

— Oeom Pe
—6 - Xu3
_e-X

M,4

time

Figure 5.1. Time history of modal amplitudes fd = 12 mode
nonlinear ROM constructed in the total energy inner prodEx
inviscid pulse problem)

Figures 5.2 and 5.3 compare the high-fidelity pressure feldv(th the field reconstructed from
theM = 12 mode compressible linearized Euler symmetry ROM (b) attitne of the 78 and
157" (final) snapshot respectively. There is a good qualitatire@ment between the high-fidelity
solution and the ROM solution.

Next, a quantitative evaluation of the ROMs is performeat nblative errors in the eight ROMs
tested are calculated using the formula (5.70) as a funofitile number of POD modéd (Table

13The stability of the nonlinear ROMs is not evaluated, as Teéen3.2.3 is limited to linear systems.
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High Fidelity p Solution - Snapshot #78

5; 12 Mode Symmetry ROM p Solution - Snapshot #78
5

-5

(a) FOM

(b) 12 mode linearized compressible Euler
symmetry ROM

Figure 5.2. Pressure fluctuation contours at time of th& &Bap-
shot (2D inviscid pulse problem)

5.5). The size of the ROM basis is varied from six to eighte€he errors in Table 5.5 reveal
that all eight ROMs deliver accurate solutions, with thelivaar isentropid.2 ROM delivering in
general the most accurate solution. Convergence with ragnein the basis sizZé is observed.

Table 5.5.ROM relative errorséel q (2D inviscid pulse problem)

Physics nner M=6 M =12 M =18

product

Linearized L2 1.38x10% ] 1.65x10° | 1.64x 107>

compr Euler symm | 1.34x107%|1.66x107° | 1.62x10°°

Nonlinear compr L2 5.72x107° | 7.32x10°%] 7.16x10°°

isentropic N-5 || Stad ene/| 4.82x 104 | 1.26x 107> | 1.23x 107>

stag enth|| 2.81x 1074 | 1.27x10°° | 1.23x 10°°

¢-formnonlinear | 2 |l 414, 104| 1.68x10°5 | 1.66x 105

compr N-S
Nonlinear L2 1.08x 104 ] 225%x107° | 2.19%x 107°
compr N-S totene || 1.02x1074 | 1.18x10°° | 1.14x 10°°

The errors in Table 5.5 give an idea of how accurate are the R@iions. Also of interest is how
well the ROMs can represent the total energy of the fluid. fFeg®.4 and 5.6 show as a function of
time the total energy of the fluid calculated using the lirestt and nonlinear ROMs (respectively),
compared with the total energy of the fluid calculated usiregROM (5.45). Similarly, Figure 5.5
shows the stagnation energy (5.50) of the fluid calculatédguthe isentropic nonlinear ROMs
compared with the stagnation energy of the fluid calculasidguthe FOM*. The reader can
observe that the ROM total/stagnation energy convergdetb©M total/stagnation energy as the
basis sizeM is increased. ROMSs based on the nonlinear compressibleNatokes equatioh’

14Recall that the total and stagnation energy is equivalarthiisentropic compressible Navier-Stokes equations.
15The total energy for the ROMs based on adorm of the nonlinear compressible Navier-Stokes equatie not
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High Fidelity p Solution - Snapshot #157 12 Mode Symmetry ROM p Solution - Snapshot #157

18

(a) FOM (b) 12 mode linearized compressible Euler sym-
metry ROM

Figure 5.3. Pressure fluctuation contours at time of the 157
shapshot (2D inviscid pulse problem)

track better the total energy of the snapshots for sMglFigure 5.6).

x 10" Total Energy (kJ) — linear ROMs
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5.0177
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5.0173f

—— M=18 ROM

5.0172
0

time

Figure 5.4. FOM vs. ROM total energy as a function of basis size
M for linear compressible Euler ROMs: solid lined.2 ROMSs,
dashed lines = symmetry ROMs (2D inviscid pulse problem)

Having studied the accuracy of the ROMs, attention is nowedrto efficiency. Table 5.6 gives
the total CPU times (in seconds) of the offline (quadraturigitecalculation and Galerkin projec-
tion) and online (time-integration using a fourth order BewKutta method with a time increment
of At = Atsnay/400) stage of the model reduction for the various ROMs carmsidl The times
reported under the “offline stage” header are frBpnrit and are averages over a total of 16
processors of a CEE Remote Graphics Workstation. The tiepgsted under the “online stage”
header are calculated in MATLAB using thec/ t oc command on a CEE Remote Graphics Work-
station. The ROM time-integration is performed in seriabtKeported in Table 5.6 is the time
required to calculate the POD bases. It takes approxima@yseconds (on 16 processors of a

shown, as the result is virtually identical to th&ROM for the nonlinear compressible Navier-Stokes equatiothe
primitive variables.
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Figure 5.5. FOM vs. ROM stagnation energy as a function of ba-
sis sizeM for isentropic compressible Navier-Stokes ROMs: solid
lines =L? ROMs, dashed lines = stagnation energy ROMs, dashed-
dot lines = stagnation enthalpy ROMs (2D inviscid pulse f@ot)

X 107 Total Energy (kJ) — nonlinear ROMs
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Figure 5.6. FOM vs. ROM total energy as a function of basis size
M for nonlinear compressible Navier-Stokes ROMs: soliddire

L2 ROMSs, dashed lines = total energy ROMs (2D inviscid pulse
problem)

CEE Remote Graphics Workstation) to calculate a POD bassszefM = 18 from Kyax = 157

shapshots.

The CPU times reported in Table 5.6 reveal that, althougimtiminear ROMs are accurate, their
offline as well as online efficiency can be improved, espicihé efficiency of the nonlinear com-
pressible Navier-Stokes ROMs constructed in the totalggnemer product. The focus here is
ROM accuracy and implementation verification; efficiencyoive addressed in future work. As
discussed in Section 4.4, efficiency of the nonlinear ROMslmarecovered by using interpola-
tion to handle the nonlinear terms appearing in these eapgtie.qg., DEIM [29], “best points”

interpolation [74, 75], or gappy POD [33] (Section 4.4).
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Table 5.6.CPU times (in seconds) for offline Galerkin projection
and online time-integration stages of the model reductaritie
ROMs considered (2D inviscid pulse problem)

Offline stage: Online stage:
POD basis size ROM Galerkin projection time-integration
(Spirit, 16 procs) | (MATLAB, 1 proc)
Linear 2.14x 10" 3.99
compr N-S
Nonlinear isentropic 587 x 10 235x% 10t
compr N-S
M—6 ~ ¢~form 1.03x 102 1.84x 10"
nonlinear compr N-S
: )
NonlinearL 9.45% 107 5.30% 10!
compr N-S
Nonlinear total energy 2.80% 10° 7.18x 10!
compr N-S
Linear 5.82x 101 3.27
compr N-S
Nonlinear isentropic 4.67 x 102 278x% 10t
compr N-S
M =12 _¢—form 7.63x 102 2.37x 10"
nonlinear compr N-S
: y)
NonlinearL 1.40% 104 9.06x 10!
compr N-S
Nonlinear total energy 4.41% 104 1.25x 102
compr N-S
Linear 1.20 107 4.74
compr N-S
Nonlinear isentropic 128x 108 4.49 % 10t
compr N-S
M 18 _¢—form 3.56x 10° 3.32x 10t
nonlinear compr N-S
: )
NonlinearL 6.64x 10° 1.81x 102
compr N-S
Nonlinear total energy 2.06x 10° 2.79% 107
compr N-S




5.5.2 2D viscous pulse in uniform base flow

The second test case is that of a 2D viscous acoustic prgssisesin the following 2D prismatic
domain:Q = (—1,1)2 € R2. The base flow is uniform, with the following valugs:=101 325 Pa,
T =300K,p = & = 1.17 kg/m?, Uy = (p = 0.0 m/s, andc'= 3480 m/s, wherec= /yRT is
the mean speed of sound. The problem is initialized with asanee pulse in the middle of the
domain:

P/ (x;0) = 1419~ 100+y)
p'(x;0) = P, (5.72)
T'(x;0) =0,
Uy (x;0) = uy(x;0) = 0.

In terms of the mean values, the amplitude of the initial gues pulse (5.72) is.001pc. A
constant viscositys is prescribed such that the Reynolds number for the prokddRe+ 28, and
a constant thermal diffusivity is prescribed such that the Prandtl numbd?is= 0.72. The Lamé
coefficientA is given by the Stokes’ hypothesis (5.37).

The 2D viscous pulse problem differs from the 2D inviscidgaybroblem considered earlier (Sec-
tion 5.5.1) in two key ways: (1) it is viscous, and (2) the higtelity simulation is obtained using
a nonlinear code, nameg§f GVA CFD, in DNS mode.

As bothSI GVA CFDandSpirit are 3D codes, a 2D mesh of the domg&ins converted to a 3D
mesh by extruding the 2D mesh in tkg-direction by one element. The resulting 3D computa-
tional grid for this test case is composed of 3362 nodes,icasB600 tetrahedral finite elements
within Spi ri t . To ensure the solution has no dynamics inxkedirection, the following values of
thexs—velocity component are specifieal = 0, uz(x; 0) = 0. A no-slip and adiabatic wall bound-
ary condition is imposed on the four sides of the domain inxfreandxo—plane and symmetry
boundary conditions are imposed for the= constant boundary in the high-fidelity code.

The high-fidelity simulation from which the ROM is generateg@erformed until tim&yax= 0.01
seconds. During this simulation, the initial pressure @y.72) reflects from the walls of the
domain a number of times and diffuses. Snapshots from the-fidglity simulation are saved
everyAtsnap= 5 x 10° seconds, to yield a total dfmax = 200 snapshots. These snapshots are
used to construct 10 mode POD bases in the various inner giodansidered. Eight of the ten
ROM approaches summarized in Table 5.2 are evaluated, pdhase allowing the inclusion of
viscosity. The size of the POD basis is determined using anggrcriterion (4.6) (see Section
4.1): a basis of size 10 is selected since it is found that 1@amcapture effectively 100% of the
snapshot energy (4.6).

Since the base flow for the viscous pulse example is unifanr(b.il),G = 0 and theA; andKj;
matrices are spatially constant, meaning a symmetry RONh#linearized compressible Navier-
Stokes equations is expected to be time-stable and stalthe isense of Lyapunov. Since the
dynamics for this example are effectively linear, the Iieed ROMs are expected to capture well
the solution. A more accurate ROM solution is expected frbenrtonlinear ROMs, however, as
the high-fidelity solver is based on the full nonlinear equa.
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As for the 2D inviscid pulse problem, the first property sadlis stability of the ROMs considered.
All eight ROMs remain stable during the time interval of irgst. Both thd_? and symmetry lin-
earized ROMs are stable based on the eigenvalue criterfeeof€m 3.2.3). Note that this property
is not guaranteed priori for linearizedL? ROMs. Indeed, it is found that dr? linearized ROM
exhibits instabilities for a variant of this test case (dssed below under the heading “Dimensional
vs. non-dimensional ROMs and stability”).

Having checked stability, the time history of the modal aitogles is plotted and compared to the
projection of the snapshots onto the POD modes (5.69). Thdtieg curves for thé/ = 10 mode
nonlinear ROM constructed in tHe® inner product is shown here (Figure 5.7) as a representative
of the overall results, which are comparable for all ROMssidered. Agreement is excellent.

x107° M=10 mode nonlinear L> ROM
gy @)

— %om )

— o Xya3

- X4

o o5 1 15 2 25 3 35
time
Figure 5.7. Time history of modal amplitudes fdr = 10 mode

nonlinear ROM constructed in tHe? inner product (2D viscous
pulse problem)

Next, relative errors in the ROM solutions with respect te mapshots are calculated according
to the formula (5.70) and reported (Table 5.7). It is founat thil eight ROMS$° evaluated deliver
comparable, accurate solutions. Although it was expeatedhie nonlinear ROMs to deliver a
more accurate solution than the linear ROMs, this does mapo be the case.

As for the 2D inviscid pulse problem, it is interesting to queme the total fluid energy calculated
using the ROMs with the total fluid energy calculated usirgyghapshots. Figure 5.8 shows the
total fluid energy calculated using the linear ROMs comparitld the total fluid energy calculated
using the snapshots. The total fluid energy calculated ubm@ROMs converges to the total fluid
energy calculated using the snapshots Withrefinement.

A somewhat surprising phenomenon is observed when exagniinétotal fluid energy calculated
using the nonlinear ROMs: whereas the kinetic energy cafedlusing the ROMs agrees well with
the kinetic energy calculated using the FOM (Figure 5.9¢a® same cannot be said of the internal
energy calculated using the nonlinear compressible N&tigkes ROM in the primitive variables

16Results for ROMs based on the nonlinear compressible N&tikes physics and the total energy inner product
are not shown for th& = 18 case, due to unavailability of computational resour&egi(Sky cluster downtime) at
the time the data for this report were collected.
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Table 5.7.ROM relative errorsel q (2D viscous pulse problem)

Physics Inner M=5 M = 10 M =15
product
Linearized L2 477x10°°%]142x10°]1.23x10°°
compr N-S symm || 5.01x10°|1.42x10°%|1.24x10°®
Nonlinear compr L2 6.81x10°°|7.18x10°%[7.42x10°°
sentropic N-5 | Stag ene/| 1.50x 107° | 1.23x107° | 1.24x 107>
stag enth|| 1.43x10°° | 1.22x10°° | 1.24x 10°°
¢-formnonlinear |2 | 514, 106 | 208x10°% | 1.65x 10°°
compr N-S
Nonlinear L2 478%x10°°%]142x10°[1.23x10°°
compr N-S totene | 4.33x10°°| 1.51x 10 —

(Figure 5.9(b)). Curiously enough, the internal energg@iated using ROMs based on tfeform

of the compressible Navier-Stokes equations matches eeihternal energy calculated using the
FOM. The reason for the discrepancy is not clear at the ptéise®, and should be investigated in
future work.

Total Energy (kJ) - linear ROMs
T T

85165

8.5165

FOM
— M=5ROM
— M=10 ROM
M=15 ROM

8.5165

8.5165

3 85165

ay

2 85165

Total El

85165
85165

8.5165 i: y "

8.5165

8.5165
0

Figure 5.8. FOM vs. ROM total energy for linear ROMs as a
function of basis sizéM: solid lines =L2 ROMs, dashed lines =
symmetry ROMs (2D viscous pulse problem)

Finally, a visualization of the ROM solutidhfor the u; component of the velocity is compared
to theu; snapshots at two times: the time of théMgnapshot and the time of the 58napshot
(Figures 5.10 and 5.11, respectively). Good agreemenigaetithe ROM solution and the snapshot
is observed at both times.

Lwithout loss of generality, for the 10 mode nonlinédrROM; solutions computed using the other ROMs were
indistinguishable from the solution shown.
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Figure 5.9. FOM vs. ROM kinetic and internal energies for non-
linear ROMs as a function of basis silke solid lines =L2 ROMs,
dashed lines €—formL? ROMSs, dotted lines = total energy ROMs
(2D viscous pulse problem)
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Figure 5.10.u; contours at time of the 1Dsnapshot (2D viscous
pulse problem)

Dimensional vs. non-dimensional ROMs and stability

It is noted earlier that, although tih& ROMSs for the 2D viscous pulse problem considered above
are stable, this is not in general guaranteeplriori. Two interesting phenomena are observed
while testing the various ROMs proposed here:

e L2 ROMs based on viscous physics tend to be more stable than R@ssl on inviscid
physics, suggesting viscosity has a stabilizing effect.

e L2 ROMs constructed in non-dimensional variables tend to beerstable than ROMs con-
structed in dimensional variables, suggesting that batingcan the ROM equations can
destabilize a ROM.
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Figure 5.11. u; contours at time of the 18Dsnapshot (2D vis-
cous pulse problem)

Both tendencies are apparent in an inviscid version of thevi8Bous pulse problem of Section
5.5.28, This problem, detailed in [55], is identical to the 2D vissopulse problem of Section
5.5.2 except it has no viscosityr = A = k = 0. Two ROMs are constructed for this problem: an
M = 20 modelL.2 ROM and arM = 20 mode symmetry ROM based on the linearized compressible
Euler equations in dimensional variables. Whereas therlé&ymmetry) ROM is stable based on
the eigenvalue criterion (Theorem 3.3.3), the forme&) ROM exhibits a severe instability, which
actually causes the? ROM to blow up by the time of snapshot 160 (Figure 5.12(c)).

High Fidelity p Solution - Snapshot #160

ressure p Solution - 20 Mode SymmewyROM ~ Pressor
"
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x x

(a) FOM (b) 20 mode linearized compressil{l®) 20 mode linearized compressible
Euler symmetry ROM EulerL? ROM

Figure 5.12.Pressure field at time of the 18@&napshot (inviscid
version of 2D viscous pulse problem)

5.5.3 Viscous laminar cavity

The third test case is that of a Mach 0.6 viscous laminar flogr avwcavity in al—shaped domain
Q=[(—6.424410) x (—1,10) x (0,0.1)]\[(—6.42440) x (—1,0) x (0,0.1)]\[(2,10) x (—1,0) x

18Note that this is a different problem than the 2D inviscidgeuproblem of Section 5.5.1.
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(0,0.1)]. The flow conditions are similar to case L2 in [80]. The freeain pressure is 25 Pa,
the free stream temperature is 300 K, and the free streamityels 208.8 m/s. The free stream
pressure is kept low to keep the Reynolds number of the flow [Bmo instances of the cavity
problem, at two different Reynolds numbers, are considered

e Re= 10904 (referred to aRe~ 1000).
e Re= 14539 (referred to aRe~ 1500).

The viscosityu is spatially constant and calculated such that the abovedtéy numbers are
achieved. The viscosity coefficieatis calculated fromu using the Stokes’ law relation (5.37).
The thermal conductivitk is also constant, calculated such tiRat= 0.72. The high-fidelity
simulations are performed using t8eGVA CFD code in DNS mode. The following boundary
conditions are specified & GVA CFD:

¢ At the inflow boundary (labeled 1 in Figure A.1), a value of tfedocity and temperature
that is above the free stream values is specified.

e The flow at the cavity walls (labeled 3 in Figure A.1) is assdruebe adiabatic and to satisfy
a no-slip condition.

e The remaining outflow boundaries (labeled 2 in Figure A.&)@ven, and a far-field bound-
ary condition that suppresses the reflection of waves ireactimputational domain is im-
plemented here (Section A.5.1).

The high-fidelity simulation is initialized by setting th@ in the cavity to have a zero velocity,
free stream pressure, and temperature. The region abowtity is initialized to free stream
conditions and the flow is allowed to evolve. The discretidedhain, illustrated in Figure 5.13,
consists of 98,408 nodes, cast as 292,500 tetrahedral dieibeents withirSpi rit. The reader

can observe that the mesh is structured but non-uniform.

For each of the three Reynolds numbers considered, a tokalf= 100 snapshots are collected
from S| GVA CFD, taken ever\tsnap= 1.0 x 104 seconds, starting at timte= 5.0 x 10~2 seconds
until time Tmax = 6.0 x 102 seconds. The snapshot collection begins at time5.0 x 102
seconds instead of at timte= 0 because it is around this time that a statistically statiptfilow
regime is reachéd. The snapshots are used to construct POD bases of size 5, 400 20 modes

in the various inner products evaluated (for each Reynaluisher considered). These bases are
used to build POD/Galerkin ROMs using seven of the eightotisROM approaches summarized
in Table 5.2. Results for ROMs based on the nonlinear corsjirlesNavier-Stokes physics and
the total energy inner product are not shown, due to undibilaof computational resources
(Red Sky cluster downtime) at the time the data for this reywere collected. ROMs based on the
isentropic compressible Navier-Stokes equations (588¢tjon 5.3.3) are also tested, as the flow
conditions in the cavity are such that the isentropic assiomfs reasonable [81].

Dstatistically stationary conditions are determined byneixeng the pressure fluctuations at several locations on
the cavity walls.
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Viscous laminar cavity domain and mesh
10

Figure 5.13. Domain and mesh for viscous laminar cavity prob-
lem

Linear vs. non-linear ROMs: expected performance

Unlike the pressure pulse problems considered in Sectidnd and 5.5.2, the viscous laminar
cavity problem is inherently nonlinear, and does not pasaesmtural steady base flow component.
It is therefore expected that a ROM based on the full nontipégsics is needed to accurately
represent the inherently nonlinear dynamics that form iwithe cavity, namely vortices which
convect. To give a complete picture, ROMs based on the limedicompressible Navier-Stokes
equations constructed using both tifeand the symmetry inner product are tested as well. In the
linearized ROMs, the base flow is taken to be the average shtlygshots. The viscous work terms
are included in the ROM equations (A.2) (see Appendix A.2).

In the local linearization approach outlined in the pregigaragraph, the nonlinear dynamics of
the flow are captured in the POD modes (Figure 5.15) but nohenejuations projected onto
these modes. Since a ROM based on linearized equationstdaegpected to reproduce all the
nonlinear dynamics in the solution of an inherently nordingroblem such as the viscous laminar
cavity problem, some discussion of what features the linediROMs can and cannot be expected
to capture is in order. The physics of the cavity flow are deieed by the shear layer over the
cavity. As the shear layer separates from the leading edtieeaavity, instabilities develop in the
separated shear layer. These instabilities grow nonlynéaform vortices convecting down the
shear layer. This process is an inviscid instability groptbcess and arises due to the nonlinear
terms in the convective part of the Navier-Stokes equati®@Ms built using a linearized form
of the Navier-Stokes equations cannot be expected to @aateurately this phenomenon. Further
downstream, the vortices impinge on the aft wall of the gayiting rise to pressure waves that are
propagated upstream through the free stream and the ceipending upon the Reynolds number
(and hence the free stream dynamic pressure), these wavesrgge from linear to nonlinear.
Since the pressure fluctuations on the cavity walls are d@edombination of these waves and
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those generated by the shear layer vortices, it is expebtgdonly the linear reflected waves
should be captured by the linearized ROMs.

Numerical experiments involving the linearized ROMs réteat, for problems with a non-uniform
base flow (such as the viscous laminar cavity), it is crittoahclude the gradient of the base flow
terms (the matrixG in (5.22) or (5.26)) in the equations projected onto the PO@es in the
model reduction. Failure to include these terms will likedgult in a ROM solution with incorrect
dynamics (Figure 5.14(a)). In the case that the base flowiteram (e.g., the 2D inviscid and
viscous pulse problems), this matrix vanishes.

Unfortunately, the inclusion of the gradient of the base flemns (theG matrix in (5.22) or (5.26))
may yield a ROM that is not time-stable. If a cavity problens laafeedback loop resonance, such
as the viscous laminar cavity problem, it is th@nlinearsaturation of the shear layer instabilities
(i.e., vortex roll-up) that bounds the amplitude of the fl@gponse. One might expect a linear
model to be unstable, therefore: t@ematrix could activate a shear layer instability. Viscosity
may work to damp out this instability at low Reynolds numbers

In the case of a viscous problem, note also that the eneatipjtist result of Corollary 5.2.1 is
not valid if the viscous work terms are included in the ROM a&ipns (A.2). A ROM based
on equations having these terms may therefore exhibit aphgsical instability (Section A.2).
The extension of the energy-stability symmetrization apph presented in Section 5.2 to the
linearized compressible Navier-Stokes equations in wikhehviscous work terms are retained
(A.2) is a worthwhile future research endeavor.

M=15 mode linearized L2 ROM M=15 mode linearized L2 ROM
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0 0

(a) G matrix excluded (b) G matrix included

Figure 5.14. Effect of including gradient of base flow(matrix
in (5.22)) in linearized ROM: time history of modal ampliesifor
M = 15 mode linearized ROM constructed in tbtinner product
without (left) and with (right) thé&s matrix (viscous laminar cavity,
Re~ 1500)
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uvelocity mode #1 uvelocity mode #2 u velocity mode #3

(a) Mode 1 (b) Mode 2 (c) Mode 3

u velocity mode #5 u velocity mode #10

(d) Mode 5 (e) Mode 10

Figure 5.15.POD modes fouy (x,t) in L? inner product (viscous
laminar cavity,Re~ 1500)

Basis size selection

It is both interesting and useful to get an idea of the sizehef ROD basis that is required to
capture the majority of the snapshot energy (4.6) beforelimgi and evaluating the various ROMs
of interest. Table 5.8 gives the percent snapshot energureapby the reduced basis modes as a
function of M, the basis size, ane the Reynolds numb&t. The reader can observe that more
modes are required to capture the same percentage of thehenapergy as the Reynolds number
is increased. Still, a relatively small number of modes gapiost of the snapshot energy: just 15
modes capture approximately 99% of the snapshot energytbrlReynolds numbers considered.
This is due to the fact that the Reynolds numbers considezesl dre not that high. For higher
Reynolds numbers and turbulent flows, it is expected thatymaore modesNl = ¢/(100)) will

be required to capture a large proportion of the snapshoggne

Table 5.8.POD mode snapshot energy percentages as a function
of basis sizeM and Reynolds numbdRe (viscous laminar cavity
problem)

‘M:5 M=10 M=15 M=20
Re~ 1000| 94.92% 98.36% 99.06% 99.33%
Re~ 1500| 91.01% 98.54% 99.44% 99.69%

2OTable 5.8 gives the average snapshot fluctuation energyativte inner products considered. For the nonlinear
approaches, the energy in the first mode is omitted, as thiesents effectively the energy in the mean flow; Figure
5.15(a).
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Figure 5.16 plots the POD basis singular values (eigensaltithe operatoR in (4.4); see Section
4.1) on a semilog plot as a function of the basis $kelt is of interest for POD reduced order
modeling how fast these singular values decay. The readesluserve a fairly rapid decay of the
singular values for both Reynolds numbers considered.

Singular Values for POD basis in (2 Inner Product
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Figure 5.16.POD basis singular values (semilog plot) as a func-
tion of basis sizeM and Reynolds numbeRe (viscous laminar
cavity problem)

ROM accuracy in representing the snapshots

First, the errors in the solutions produced by the ROMs stlidre calculated using the formula
(5.70) (Table 5.9 folRe~ 1000 and Table 5.10 foRe~ 1500). The reader can observe from
Tables 5.9 and 5.10 that all ROMs considered achieve avelatior of between 1% and 10% with
respect to the high-fidelity snapshots from which they arstrocted. Th&®e~ 1000 ROMs are in
general more accurate than tRex~ 1500 ROMs. Convergence of the ROMs wih-refinement

is not observed, which suggests there is a limit to the acguttte ROMs can achieve for the
viscous laminar cavity problem. It is curious to observe tha ROMs based on the linearized
physics are in some cases more accurate than the ROMs bagedlorear physics. This result is
unexpected, and leads one to prefer the linear ROMs ovethienear ROMs, as they are cheaper
to evaluate. It is worthwhile to investigate why the noninROMs are not more accurate than the
linear ROMs for this problem in future work.

Also interesting to note is that the ROMs based ondhtorm of the compressible Navier-Stokes
equations do not deliver a solution with the same accurathea®ROMs based on the nonlinear
compressible Navier-Stokes equations in the primitivéades. This is likely due to the fact that
the different formulations, although mathematically egient, give rise to different POD modes.

As a sample illustration, the time history of the third andrtb ROM modal amplitudes compared
to the projection of the snapshots onto the third and fouBDPnodes for thévl = 20 isentropic
ROM constructed in the stagnation energy inner productfeRie~ 1500 instance of the viscous
laminar cavity are shown in Figure 5.17. Figure 5.18 shows@as of theu;—velocity at the
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Table 5.9. ROM relative errorséreq (viscous laminar cavity,

Re~ 1000)
Physics Inner M=5 M =10 M =15 M = 20
product
Linearized L2 303x102[304x102[385%x10 2[4.57x102
compr N-S symm || 2.94x 1072 |298x10°2 | 3.73x 102 | 517x 102
Nonfinear compr L2 1.92x10 2| 212x102|242%x102| 221x 102
icentronic N-Sp stag ene | 3.27x 1072 | 3.81x 1072 | 5.37x 1072 | 3.38x 1072
P stag enth|| 3.23x 1072 | 3.53x 1072 | 430x 102 | 3.11x 10?2
¢formnonlinear | 2 | 397,902 | 420x10°2 | 424x10°2 | 492x 102
compr N-S
Nonlinear 12 | 288x102|293x10°2 | 2.86x 102 | 2.94x 102
compr N-S
Table 5.10. ROM relative errorsérel o (viscous laminar cavity,
Re~ 1500)
Physics Inner M=5 M =10 M =15 M = 20
product
Linearized L? 3.03x102[3.04x10%|385x10°? | 457x10°?
compr N-S symm || 296x 102 | 298x102|3.73x102|517x 102
Nonlinear comor L2 1.98x10°% [ 279x102]273x10°% | 276x10°?
ot NG | Stagene| 418x 1072 | 459x10°2 | 463x 102 | 231x10°2
P stag enth| 4.10x 1072 | 453x 102 | 4.33x 1072 | 2.69x 10-2
¢formnonlinear | 2 | 657 102| 913%x10°2 | 1.01x 101 | 6.45x 102
compr N-S
Nonlinear 12 | 453x102|511x102|4.82x10°2 | 4.21x 102
compr N-S

times of the %, 50" and 108" snapshot for this ROM solution compared with the FOM sokutio
The figures reveal that the ROM is able to capture accurdtelgolution dynamics.

ROM accuracy in representing snapshot kinetic and internalenergies

Next, the fluid kinetic and internal energies calculatecdhgghe linear (Figures 5.19 and 5.22)
and nonline&t (Figures 5.21 and 5.24) ROMs are compared with the fluid ldraed internal
energies calculated using the FOM. The fluid specific andhstiémn energies (Figures 5.20 and
5.23) calculated using the isentropic ROMs are also condpaith the fluid specific and stagnation
energies calculated using the FOM. Only the specific enefgietheRe~ 1500 isentropic ROMs
agree well with that of the snapshots (Figure 5.23(a)). fioisknown at the present time why this

21Results for th&—form ROMs are not shown, as they are indistinguishable tlteemonlinear ROM results.
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Figure 5.17.Time history of modal amplitudes fé#l = 20 mode
nonlinear isentropic ROM constructed in the stagnationgynia-
ner product (viscous laminar cavitge~ 1500)

is the case.

ROM efficiency

Lastly, efficiency of the various ROMs evaluated is examiniedle 5.11 gives the total CPU times
for the offline (quadrature weight calculation and Galegkiojection) and online (time-integration
using a fourth order Runge-Kutta scheme with a time incraroeft = 1.0 x 10~° seconds) stage

of the model reduction for the various ROMs. All times are@cands. The times reported under
the “offline stage” header are fro8pi ri t and are averages over a total of 96 processors of the Red
Sky cluster. The times reported under the “online stagetlbeare calculated in MATLAB using
theti c/t oc command on a CEE Remote Graphics Workstation, and are fiat gmne processor)
runs. It takes between 20-30 seconds to calculate a PODdfaseM = 25 from Kyax= 100
shapshots in parallel on 96 processors on the Red Sky cfostait the ROMs.

The reader can observe that both the offline and online sté#ghe model reduction take signifi-
cantly more time for the nonlinear compressible Navielk88ROMs than the offline and online
stages for ROMs based on the linear, nonlinear isentropit,n@nlinear{—form of these equa-
tions. The relative expense of the nonlinear compressilaigidd-Stokes ROM increases at an
exponential rate witiM. This is a result of the fact that, for the compressible Na@i®kes equa-
tions in the primitive variables, the computation of higloeder ROM coefficient tensors (in the
offline stage) and tensor/vector products involving thegldr-order tensors (in the online stage)
is required. Efficiency of the nonlinear compressible Ne@tokes ROMs can be recovered by
using interpolation to handle the nonlinear terms appgannthe ROM equations, e.g., DEIM
[29], “best points” interpolation [74, 75], or gappy POD [3Section 4.4).

Additional numerical results for the viscous laminar cgvit which the ROM is constructed from
a total ofKmax= 500 snapshots and run until tiMigax= 0.1 seconds, can be found in Appendix
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Table 5.11. CPU times (in seconds) for offline Galerkin projec-
tion and online time-integration stages of the model reédndor
the ROMs considered (viscous laminar cavity problem)

Offline stage: Online stage:
POD basis size ROM Galerkin projection time-integration
(Spirit, 96 procs) | (MATLAB, 1 proc)
Linear
compr N-S 1.46 2.09
Nonlinear isentropic 131 2.38
compr N-S
M=5 {—form
_ 1.74 2.93
nonlinear compr N-S
- Z
NonlinearL 717 1.01x 10
compr N-S
Linear
compr N-S 132 270
Nonlinear isentropic 8.81 3.48
compr N-S
M=10 {—form
6= 1.13x 10 3.67
nonlinear compr N-S
- 2
NonlinearL 8.31 x 10 8.31
compr N-S
Linear
compr N-S 280 29
Nonlinear isentropic 1.92% 10t 5.01
compr N-S
M=15 {—form
6= 2.98x 10 4.51
nonlinear compr N-S
: Z
NonlinearL 4.01 % 12 1.65x 10
compr N-S
Linear
compr N-S 4.22 >
Nonlinear isentropic 4.82 x 10 5.33
compr N-S
M=20 {—form
6 7.37x 10! 5.56
nonlinear compr N-S
- 2
NonlinearL 2 15x% 10° 2.42x 10
compr N-S
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u velocity snapshot #1 u velocity snapshot #50

(a) Time of 1 snapshot (b) Time of 50" snapshot

u velocity snapshot #100

(c) Time of 108" snapshot

Figure 5.18.u;—velocity contours at several times for FOM com-
pared taM = 20 nonlinear isentropic ROM constructed in the stag-
nation energy inner product (viscous laminar caviRg~ 1500)

A.6.

5.6 Summary

In this chapter, the energy-stability preserving modelictidn approach developed specifically for
the equations of linearized compressible inviscid flow i0,[27] is generalized: for ROMs con-
structed using the continuous projection approach, it sswhthat a transformation of a generic
PDE system of the hyperbolic or incompletely parabolic tigsels to a stable formulation of the
Galerkin ROM for this system. It is then shown that, for mangar PDE systems, the said trans-
formation is induced by a special inner product, referreaistthe “symmetry inner product”. If the
Galerkin projection step of the model reduction procedsnearformed in this inner product, the
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Figure 5.19.FOM vs. ROM kinetic and internal energy for linear
ROMs as a function of basis si#& solid lines =L2 ROMSs, dashed
lines = symmetry ROMs (viscous laminar caviRge~ 1000)
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Figure 5.20. FOM vs. ROM specific and stagnation energy for
isentropic ROMSs as a function of basis size solid lines =L?
ROMs, dashed lines = stagnation energy ROMs, dashed-dast lin
= stagnation enthalpy ROMs (viscous laminar cakgr 1000)

resulting ROM is guaranteed to satisfy certain stabilityds regardless of the reduced basis em-
ployed. Examples of the symmetry inner product for lineatems of PDEs that commonly arise
in modeling applications (e.g., the linearized comprdsedtuler and Navier-Stokes equations; the
wave equation; the linearized shallow water equationsymen.

Next, approaches for building energy-stable ROMs for theaéigns of nonlinear compressible
flow, the PDEs of interest in the targeted compressible weyuiarry application, are explored.
Three forms of the nonlinear compressible Navier-Stokestgns are considered: the full com-
pressible Navier-Stokes equations in the primitive vdesjthe —form of the full compressible
Navier-Stokes equations, and the isentropic compredsinlér-Stokes equations. An inner prod-
uct that induces the integrated stagnation energy or stiagrenthalpy of the flow, proposed origi-
nally by Rowleyet al. in [81] for the isentropic compressible Navier-Stokes diquis, is reviewed.
This inner product motivates the derivation aofi@wtransformation and corresponding energy in-
ner product for the full compressible Navier-Stokes edqunetj presented for the first time in this
report. The proposed new inner product induces the totabgred the fluid system, a physically
meaningful quantity that is conserved for problems in whiorexternal forcing is applied. If the
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Figure 5.21.FOM vs. ROM kinetic and internal energy for non-
linear ROMs as a function of basis si solid lines =L.2 ROMs
(viscous laminar cavityRe~ 1000)
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Figure 5.22.FOMvs. ROM kinetic and internal energy for linear
ROMs as a function of basis si# solid lines =L2 ROMs, dashed
lines = symmetry ROMs (viscous laminar caviRe~ 1500)

projection step of the model reduction is performed in thaltenergy inner product, the resulting
Galerkin ROM should preserve the stability of an equilibripoint at the origin for the governing
equations.

A stability-preserving discrete implementation of the tomous Galerkin projection method is
developed. A parallel C++ cod8&pirit, that was developed as a part of this LDRD project and
builds ROMs for various linearized as well as nonlinear cagspible flow physics using contin-
uous Galerkin projection in several inner products is deedr The code uses vector data struc-
tures and parallel eigensolvers from the Trilinos projd&j [and the quadrature routines from the
| i bnesh finite element library [63]. As a stand-alone cod&pjrit can be synchronized with
any high-fidelity solver that can output a mesh and snapsitatstored at the nodes of this mesh,
including the Sandia in-house LES flow solver used in theieceymarry applicationSl GVA CFD.

The performance of the various ROMs described in this chaptevaluated on three test cases:
a 2D inviscid pulse problem, a 2D viscous pulse problem, amg@us laminar cavity problem
at several Reynolds numbers. For all three tests, emplsagiaded on reproducing a given CFD
solution for a single set of flow conditions in a stable ancduaate fashion, as this is a prerequisite
to using the ROM in a predictive setting. The first two tesiesdsave effectively linear dynamics,
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whereas the third case has inherently nonlinear dynamarsgely vortices that convect, and is
posed on the geometry of interest in the targeted applicétio openm—shaped cavity).

For the first two test cases, all linear as well as nonlineaMB@onsidered perform compara-
bly, and capture well the snapshots from which they are coct&td. For these problems, the
linearized ROMs are sufficient and recommended due to theied computational cost. The pro-
posed energy-stable ROMs do indeed possess better nuhstaibiity properties than their?
ROM counterparts, which lack in general arpriori stability guarantee. There is, however, an
unexpected discrepancy between the internal energy esdclilising the nonlinear ROMs for the
2D viscous pulse test case and the internal energy caldulaiag the snapshots.

For the third test case, the viscous laminar cavity problalnlinear and nonlinear ROM ap-
proaches deliver a solution with approximately the sameraoy. The ROM solutions are reason-
able but convergence of the ROM solution with-refinement is not in general observed, and the
ROMSs do not accurately reproduce the fluid total energy ferehtire time interval considered.
Further numerical experiments performed for the viscoasrar cavity (Appendix A.6) demon-
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strate that the POD/Galerkin approach may yield ROMs theauareliable for longer time cavity
simulations, even when an energy inner product is employebtbtthe Galerkin projection. The
method seems highly dependent on the set of snapshots esdplogalculating the POD basis:
when more snapshots are included in the basis calculatiany wf the ROMs exhibit unexpected
instabilities (Appendix A.6).

5.6.1 Prospects for future work

Further code verification is recommended to ensure a bugHinglementation of the proposed
energy inner products iBpirit. It may be possible to improve the accuracy of the proposed
nonlinear ROMs for compressible cavity problems by apgysome recently proposed ideas,
e.g., through the incorporation of fine-scales into the RGib[5, 76, 22, 15, 92], through the
addition of LES turbulence closure terms to the ROM equati®], through the incorporation
of boundary condition terms in the ROM equations [39, 57] g&pdix A.5), and/or through an
adaptiveh-refinement of the ROM basis [26]. It may also be worthwhilsde if the situation can
be improved by devising specialized snapshot collectaanfding methods (e.g., methods based
on “optimal” sampling strategies [70]; methods in which tewergy modes are included in the
POD basis [82, 15]). It is conjectured that using a set of shafs spaced closer together in time
(i.e., with a smalleAtspap) to construct the POD basis may yield a more accurate antedRahV

for the viscous laminar cavity problem [14]. For problemshaa periodic limit-cycle solution
like the viscous laminar cavity problem, using a shapshbteggresenting just one period of the
solution to calculate the POD basis may also give rise to @®bBOM [14]. Lastly, it has been
argued that POD modes corresponding to complex conjugatsipgular values of the snapshot
matrix (eigenvalues of the operat@rin (4.4); see Section 4.1) should be retained in pairs in the
POD basis truncation [82, 14]. This strategy is not emplayeadl the experiments summarized in
this report, and may be considered in the future.

An additional concern worth addressing in future work imead the efficiency of ROMs con-
structed using the proposed total energy inner productHernonlinear compressible Navier-
Stokes equations. As discussed earlier in this chapterfotimeulation requires the projection
of high-order polynomial terms in the offline stage of the mlagduction, and the evaluation of
tensor/vector products involving large ROM coefficientsers in the online stage of the model re-
duction, which can invalidate the temeducedorder model except for very small. This difficulty
can be overcome through the incorporation of interpolati@thods, e.g., the discrete empirical
interpolation method (DEIM) [29], “best points” interpdilan [74, 75], or gappy POD [33], into
the ROM approach. A theoretical and numerical study of thecebf such interpolation methods
on ROM accuracy and stability would be required.

Per the discussion in Chapter 1, Large Eddy Simulationset#ptive-carry scenario performed
using theSI GVA CFD code can take on the order of weeks to complete, as long mestand
fine meshes are required. The ultimate goal is to use in plateese high-fidelity simulations
a ROM constructed from some set of high-fidelity snapshotshiéving this goal requires the
implementation of model reduction capabilitiesSNGVA CFD, a task planned for the near future.
In order to be useful, the ROM approach selected for thisemgintation must:
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e Be capable of predicting the cavity dynamics beyond the-kior&zon up to which the snap-
shots were collected and for a different set of flow cond#ioh model reduction method
that delivers ROMs which are robust with respect to paranatanges, e.g., different flow
conditions, is required. A survey of the literature suggdbat a general fast and robust
method for adapting pre-computed ROMs to a new set of phiysicaodeling parameters is
still lacking at the present time, although some promisdeas have been proposed [6, 26].

e Be reliable and fast enough to be used for on-the-spot aisalgg., uncertainty quantifica-
tion, flow control).The ROM-based analysis of particular interest to Sandia ike area of
uncertainty quantification (UQ). Here, the idea would bedjplace the high-fidelity model
in a sampling-based Markov Chain Monte Carlo (MCMC) aldoritwith a ROM, which,
unlike the high-fidelity simulation, can be queried manydsrin real or near-real time at
a low computational complexity. For a survey of ROM-based td€hods for the captive
carriage application, the reader is referred to [18]. Almterest for the captive carriage
application is ROM-based flow control, with is discusseettyiin Appendix A.11 and may
be pursued further in future research.

The numerical tests performed as a part of this LDRD project summarized in this chapter
suggest the POD/Galerkin approach may not be the best chbim®del reduction method for
the compressible cavity problems simulated uSh@VA CFD. Other approaches, e.g., the GNAT
method [27], have yielded promising results for problemehsas these, and may be a better
option.
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Chapter 6

Stable ROMs via discrete projection

Chapter 5 focuses on the construction of energy-stablegtion-based ROMs for linear as well
as nonlinear conservation laws using continuous projecédtention is now turned to developing
stable projection-based ROMs using the discrete projectpproach. Only linear time-invariant
(LTI) systems (Section 4.5) are considered, as a first steartis the more general nonlinear case.
One advantage of the discrete projection approaches Heddn this chapter over the continu-
ous projection approaches of Chapter 5 is that the discpgieaches can be implemented in a
“black-box” fashion, that is, without requiring accesslie governing PDEs or high-fidelity code
discretizing these PDEs. A consequence of this propertyaisthe approaches are not limited to
a particular physics set (e.g., the compressible captver@roblem); they can be applied aoy
problem inanyapplication.

In Section 6.1, a discrete counterpart of the symmetry ipmeduct (developed in Section 5.2
for linearized conservation laws) is derived. This innesdarct is termed the “Lyapunov inner
product”, and was first proposed in the context of model redndy Rowleyet al. in [81], but
has not been tested extensively at the present time. A ncahstudy of the performance of ROMs
constructed in this inner product is undertaken here.

In Section 6.2, mewapproach for building stable projection-based ROMs fordyldtems is devel-
oped. The approach, termed “ROM stabilization via eigareatassignment”, stabilizes unstable
ROMs through ara posterioripost-processing step applied to the algebraic ROM systems T
stabilization step consists of a reassignment of the eaaas of the ROM system matrix and
is motivated by ideas from control theory [11, 96]. Accuradythe stabilized ROM is ensured
through the formulation and numerical solution of a consged nonlinear least-squares optimiza-
tion problem in which the error in the ROM output is minimized

For more detail on the methods described in this chaptereheer is referred to the following
journal articles and SAND reports, written as a part of tHdRD project: [59, 60, 61].

In each of the main section of this chapter, Section 6.1 antides 6.2, the methods described
therein are tested on the same two test cases, referred e agernational space station (ISS)
benchmark and the electrostatically actuated beam benkhifilae avoid unnecessary repetition,
the test cases are summarized here. For both examplesrahéneéhe ROM output relative to the
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full order model output is computed and reported. This vawealculated using the formula

5 x|y on(ti) — Yom(ti)] .

6.1
5 Kmax|yon(t)| 64

grel,y =

Here the symbdKmaxdenotes the integer such thitax= Kmadtsnap WhereTyaxis the maximum
time until which the ROM is run. The notation | in (6.1) denotes the absolute value, which
evaluates to a scalar for the numerical examples considenegin, as they both have one output
(Q=1in(4.18)).

Benchmark #1: International space station (ISS)

The first numerical example involves a structural model efRussian service module component
of the international space station (ISS) [10]. This sermixalule is a large flexible structure whose
dynamics can be described using a linearized form of thetessof motion (a second order PDE
system). Written in first order LTI form, the model consistsasystem of the form (4.18) with

N = 270. The matrice®\, B andC defining (4.18) are downloaded from the ROM benchmark
repository [28]. The matriA is sparse, as it comes from a finite element discretizatiosingle
output is considered, corresponding to the first row of thérisn&. It is verified that the FOM
system is stable: the maximum real part of the eigenvaluésief-0.0031.

Benchmark #2: Electrostatically actuated beam

The second numerical example is that of an electrostatieatiated beam. Applications for this
model include microelectromechanical systems (MEMS)ak/such as electromechanical radio
frequency (RF) filters [68]. Given a simple enough shapesdldevices can be modeled as one-
dimensional beams embedded in two or three dimensionakspHte beam considered here is
supported on both sides, and has two dofs: the deflectiorepdiqular to the beam (the flexural
displacement), and the rotation in the deformation plahe flexural rotation). The equations of
motion are determined from a Lagrangian formulation. Itastamed that the beam deflection is
small, so that geometric nonlinearities can be neglectbd.r&sulting linear PDEs are discretized
using the finite element method following the approach preskin [54, 68]. The result of this
discretization is a second order linear semi-discreteegysif the form:

MX(t) +EX(t) +Kx(t) = Bu(t

y(t) = Cx(t (6.2)

~— —

bl

whereX = ‘;—Zg‘. The input matriXB corresponds to a loading of the middle node of the domain, and
y(t) is the flexural displacement at the middle node of the donigie.damping matrik is taken
to be a linear combination of the mass maiixand the stiffness matriK :

E=cuM +ckK, (6.3)

with oy = 107 andck = 102, LettingX(t) = x(t), the second order system (6.2) can be written as
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the following first order system:
(7o) (i) (5 2) (Gig) (8 )we oo
(t) '

or
(6.5)

wherez(t) = ( ﬁ(t) ) c RN and

(t)
AE(_Mo_lK —Ml_lE)’ |§5<M918), C=(Cc 0). (6.6)

The matriceM andK in (6.2), which are sparse, as they come from a finite elemsatetization,
are downloaded from the Oberwolfach model reduction bemckroollection [3]. These global
matrices are then disassembled into their local countes;pand reassembled to yield a discretiza-
tion of any desired size. In the full order model for whichuks are reported her&l = 5000, so
(6.5) has 10,000 dofs. Itis verified that the full order sgstg stable: the maximum real part of the
eigenvalues oA is —0.0016. It is worthwhile to note that, unlike for the ISS examphe matrix

A that defines the system (6.5) for the electrostaticallyaetlibeam test casenst sparse. In
particular, it is straightforward to see from (6.5) thastmatrix is of the formA = ( A1, Az )T
whereA; € RN*N js sparse, buh, € RN*N s dense.

6.1 Stability-preserving Lyapunov inner product

In Chapter 5, a method for constructing energy-stable ROBIsantinuous projection of a system
of PDEs was presented. The discussion in Chapter 5 motitlaée®llowing question: can the
energy inner product be determined in a black-box fashioarfig given full order model system?
It is shown in the present section that there is a discretategpart of the symmetry inner product
(recall that the symmetry inner product is the energy inmedpct for linear conservation laws;
Section 5.2), first derived by Rowlest al. [81] and termed the “Lyapunov inner product” herein.
Although the Lyapunov inner product has appeared in seyetaications [81, 85, 8], to the au-
thors’ knowledge, a numerical study of the properties amtbpmance of POD ROMs constructed
in the Lyapunov inner product is lacking from the literatatethe present time, and one of the
contributions of this work.

Consider an LTI system of the form (4.18). Suppose the sysatable in the sense of Lyapunov,
i.e., all eigenvalues of the matri have non-positive real parts (Theorem 3.2.3). Siaég stable,
there exists a Lyapunov function for

XN(t) = Axn(t). (6.7)
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In particular,
V(xn) = XN PxN, (6.8)

is a Lyapunov function for (6.7), wheReis the solution of the following Lyapunov equation:
ATP+PA=-Q. (6.9)

Here,Q is some positive-definite matrix [11]. A positive definitdigon P to (6.9) exists provided
A is stable. Moreover, iQ is symmetricP is symmetric as well. GiveA andQ, a solution to the
Lyapunov equation (6.9) can be obtained, for instance,gusial yap function in the MATLAB
control toolbox [2]:

P=1lyap(A, Q []. speye(N. N).
Assume the system (6.7) is stable and a positive-definiterstnic P has been computed from
(6.9). SinceP is symmetric positive-definite, the following
(xﬁ),xﬁf)) = xUTpx@ (6.10)
defines an inner product. LdY, be a reduced basis of sik& so that
XN(t) ~ ®uxm(t), (6.11)

wherexy (t) denotes the ROM solution. Theorem 6.1.1 (summarized here [81] to keep this
report self-contained) shows that (6.10) is the energyripneduct for this system.

Theorem 6.1.1 (from [81]): Assume the linear full order system (6.7) is stable. SuppdR©M
for (6.7) is constructed via a Galerkin projection in the )p inner product (6.10), to yield the
following reduced linear system:

xm = D PADY X, (6.12)

where it has been assumed that the bé@gjshas been constructed to be orthonormal in(thgp
inner product, i.e.sD{,, P®\ = Iy wherely denotes théM x M identity matrix. Then, the ROM
(6.12) is energy-stable, time-stable and stable in theesehlsyapunov.

Proof. Itis shown that the enerdgyy = %||xM||§ of the ROM system (6.12) is non-increasing:

dEw
dt

_lngM X|\/|

M‘DT (%PA+ %PTA) Pyixm (6.13)
Lol (%PA+§ATP) Dyxm
_% M¢|\/|Q¢MXM

Y

1
2
XM
XM CDM PACDM XM
X
XM

Al
o

sinceQ > 0. It follows that (6.12) is time-stable, stable in the sendeyapunov and energy-stable
(Section 3).
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The Lyapunov inner product (6.10) is a discrete counterpfthe continuous symmetry inner
product (5.16). This inner product can be employed to cansstable Galerkin ROMs for LTI
systems of the form (4.18) using discrete projection. Aan@sting question that arises is whether
the matrixP defining the Lyapunov inner product (6.10) is related in sovag to the matriX\
(5.67) that is used to perform the continuous projectiomégymmetry inner product. In general,
the answer is no. In particulad is by construction a sparse matrix (Figure 6.1(a)), whelreagy

be dense even & is sparse. This is clear from Figures 6.1(b) and (c), whidwsfrespectively)
the sparsity pattern of a sampematrixt, and its corresponding matrix.

2000 10
4000 20
6000 30
8000 40
10000 50
12000 60

14000 70

16000 80

0 5000 10000 15000 0 20 40 60 80 0 20 40
nz = 252028 nz = 382 nz = 7056

(@ w (b) A (©P

60 80

Figure 6.1. Sparsity structure of representatiPematrix for a
given sparsé\ matrix compared to sparsity structure of represen-
tative W matrix

One downside of the Lyapunov inner product is that the m&rvhich defines this inner product
is admittedly expensive to compute: the cost of solving tlgapunov equation (6.9) requires
¢(N3) operations. As a consequence, the Lyapunov inner prodsctieasame downside as
another model reduction approach withaapriori stability guarantee, namely balanced truncation
[73, 42]: it may not be practical to compute the matfixlefining the Lyapunov inner product for
very large systems.

It is worthwhile to note that computing (6.9) is less computationally intensive than reducing a
system using balanced truncation, which requires theisalaff two Lyapunov equations for the
so-called observability and reachability Gramianslthe factorizations of these Gramians [73, 42]
(see Appendix A.7). The computational cost of calculatimg weighting matrix that defines the
Lyapunov inner product relative to the computational cdsteducing a system using balanced
truncation is studied numerically in Section 6.1.1. Notattih can be shown that the balanced
truncation algorithm may be viewed as a projection algatith a special Lyapunov inner product
[81]. A proof uncovering this connection is given in Appexdi.8.

As observed earlier for the symmetry inner product, it iscfeom (6.12) that the Galerkin projec-
tion of the system (6.7) in the Lyapunov inner product (6.d&) be viewed as a Petrov-Galerkin
projection of this system in the regul&éf? inner product, with the reduced test basis given by

1The A matrix whose sparsity pattern is shown in Figure 6.1(b) & “RDE example” in the SLICOT model
reduction benchmark repository [28].
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Y\ = P®y, where®y, is the reduced trial basis.

6.1.1 Numerical experiments

The performance of POD/Galerkin ROMs constructed in thepuy@v inner product is now eval-
uated on two examples: the international space stationggland the electrostatically actuated
beam problem, introduced at the beginning of this chapter.

International space station (ISS) test case

To generate the snapshots from which the POD bases are waestr the full order model is
solved using a backward Euler time integration scheme witimigial condition ofxy(0) = 0 and
up(t) = (1x 10 &—_o. That is, at time = 0, an impulse of magnitudex410* is applied. A total

of Kmax = 2000 snapshots are collected, evAty,ap= 5 x 10> seconds, until tim&@max= 0.1
seconds. These snapshots are used to construct POD bagesbf s- 5, 10, 20, 30, and 40. For
eachM, a POD basis is computed using ttfeinner product, as well as the Lyapunov inner product
(6.10). The matrixP defining the inner product (6.10) is obtained using ltlgap function in
MATLAB'’s control toolbox withQ = Iy, theN x N identity matrix (Section 6.1). The POD ROM
solutions are compared with solutions obtained by reduttiegsystem using balanced truncation
[73, 42]. First, the eigenvalues of the ROM matAyx, for eachM are computed to determine
stability using Theorem 3.2.3. The maximum real part of tigemvalues of these ROM system
matrices is plotted in Figure 6.2 as a functionMf The reader can observe that the Lyapunov

700

® BT
POD L2
5001 POD Lyapunov P

6001

400

3001

2001

Maximum Real Part of AN|

100r

()T e ° o T
_100 L L L L L L
5 10 15 20 25 30 35 40
M

Figure 6.2. Maximum real part of eigenvalues of ROM system
matrix Ay for ISS problem

inner product POD ROMs and balanced truncation ROMs aréestaball M considered — all the
real parts of the eigenvalues of these systems’ matrices 8rdn contrast, th&? POD ROMs are
unstable for alM.
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Having checked stability, each ROM is run until a specifietelhax, and the average error in the
output relative to the full order model (6.1) is computedeTalative errors (6.1) in the output for
ROMs of different sizes run up to different valuesigfax are summarized in Table 6.1. In the case
a ROM went unstable and (6.1) overflowed, the table contaireng&y of —'.

The objective of theKmax = 2000 Tmax = 0.1 seconds) run is to test how well the POD bases
can reproduce the snapshots from which they were constieseexactlyKnax = 2000 snapshots
(taken up tdTmax= 0.1 seconds) were used to generate these bases. AlthoughP@D ROM is
unstable for all values d#l considered (Figure 6.2), this ROM still produces a reaskensdiution

for M =5 andM = 10 (Figure 6.3(a) and Table 6.1). The instability maniféstdf if a larger basis
size is used, however. The Lyapunov ROM remains stable andate — orders of magnitude more
accurate than the balanced truncation ROM for édatonsidered (Table 6.1).

The objective of thd&iax= 5000 (Tmax = 0.25 seconds) anmax= 10,000 (Tmax= 0.5 seconds)
runs is to test the predictive capabilities of the POD ROMatree to the balanced truncation
ROMs for long-time simulations. The reduced order modedsian for a much longer time horizon
than the run used to generate the POD bases employed infgutltk ROMs. FoKax= 5000,
The L2 POD ROM exhibits an instability for aM considered exceptl = 10. For this value of
M, the balanced truncation ROM and Lyapunov POD ROM are morerate than thé2 POD
ROM, however (Figure 6.3(b) and Table 6.1). Fafax= 10,000, theL2 POD ROM is unstable
for all M considered. This instability is apparent in Figure 6.3k@nce, the instability identified
in the earlier eigenvalue analysis (Figure 6.2) manifastsfiif the L2 POD ROM is run for a long
enough time. FoKpnax= 5000 andKmax = 10,000, the Lyapunov POD ROM is more accurate
than the balanced truncation ROM for smidll However, its accuracy is limited, as there does not
appear to be a convergence withrefinement.

Table 6.1. Relative errors (6.1)ey in ROM output for ISS

problem
M
Kmax Method 5 \ 10 \ 20 \ 30 \ 40
Balanced truncatiof] 9.80x 102 | 6.39x 102 | 9.56x 103 [ 2.34x 10°° | 8.34x 10°*
2000 PODL? 1.09%x 104 | 3.14x 107/

POD Lyapunow’ || 8.69x 106 | 405x107 | 1.13x 106 | 844x 107 | 9.22x 107’/

Balanced truncation] 7.64x 102 | 468x 10 ° | 8.14x 103 | 1.87x10° | 558x 10°*
5000 PODL? 2.41 4.73x 1072 — — —

POD Lyapunow || 2.88x 1072 | 524x 103 | 1.31x 102 | 1.21x 1072 | 2.86x 102
Balanced truncation] 6.87x 102 | 447x10° | 7.08x 103 [ 1.78x10°° | 5.76x 10 *

10,000 PODL?2 165 3.24 - — _
POD Lyapunow’ || 525x 102 | 6.46x 102 | 9.92x 102 | 1.08x 101 | 9.92x 102
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Figure 6.3.ygm(t) for M = 10 ROMs (FOM = full order model)
for ISS problem

Electrostatically actuated beam test case

To generate the snapshots from which several POD basesrastuied for the electrostatically

actuated beam example, the full order model (4.18) is sakgath a backward Euler time integra-

tion scheme with an initial condition ody(0) = 0 and an input corresponding to a periodic on/off
switching, i.e.,

1, 0.03<t<0.035 (6.14)

0.005<t < 0.01,0.015<t < 0.02
0, otherwise

A total of Kmax = 1000 snapshots are collected, evétynap= 5 x 10° seconds, until time
Tmax= 0.05 seconds. From these snapshots, 5, 10, 20 and 30 mode R@Narstructed using
POD in theL? inner product, and POD in the Lyapunov inner product. Inisgjthe Lyapunov
equation (6.9) for the Lyapunov inner product weighting mxa®, the matrixQ is taken to be the
N x N identity matrix. The system (4.18) is reduced also usingatd truncation.

As for the ISS example, the first step is to study the stabifitgach ROM. Figure 6.4 shows the
maximum real part of the ROM system matridgg for eachM considered. It is found that the
L2 ROM is unstable for each, and becomes more unstable with increadvhgin contrast, the
balanced truncation and POD Lyapunov inner product ROMstatale for allM considered, as
expected.

Next, the accuracy of each ROM is examined. Table 6.2 sunaemthe errors (6.1) in the ROM
solutions relative to the full order model solution for taneins of different lengths. As before, an
entry of ‘-’ in the table indicates that the error overflowed due to atainity in the ROM.

The objective of the first runkKmax = 1000) is to study how well the POD ROMs can reproduce
the snapshots from which they were constructed, and to cantbase ROMs’ performance with
the performance of ROMs constructed using balanced triomcathe reader can observe that the
POD ROM constructed in the Lyapunov inner product is the raostirate. The POD? ROM is
both unstable as well as inaccurate (Figure 6.5(a)).

The second two rungax= 2000 anKmax= 5000) are aimed to study the predictive capabilities
of the ROMs for long-time simulations. The full order modetun until times 0L and 25 seconds
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respectively. As before, only snapshots up to ttme0.05 seconds are used to construct the POD
bases for the ROMs. In addition to the signal (6.35), theofoiihg inputs are applied in both the
full order model and the ROM:

Up(t) =

0.055<t < 0.06,0.065<t < 0.07,
0.08 <t < 0.0850.105<t < 0.11,
0.115<t<0.120.13<t < 0.135
0.205<t<0.21,0.215<t < 0.22

1, 0.23<t<0.235
0, otherwise

(6.15)

The reader may observe by examining Table 6.2 and Figuréét Fite balanced truncation ROMs
are in general the most accurate. The POD ROMs constructdteihyapunov inner product
nonetheless produce reasonable results (Figures 6 §jlgrd appear to be converging to the full
order model solution witiM-refinement (Table 6.2). The POIF ROM result is not shown in
Figures 6.5(b)-(c), as the solution produced by this ROMwvslap around timé = 0.02 seconds.

Table 6.2. Relative errors (6.1%re1y in ROM output for electro-
statically actuated beam problem

Kmax Method 5 10 20 30
Balanced truncatior] 6.29x 102 | 451x 103 | 6.93x 10 | 3.60x 10°°

1000 PODL?2 8.56x 101 6.62 — —
POD Lyapunow’ | 2.05x10°3 | 6.23x10°° | 209x 108 | 1.35x 1078
Balanced truncatior] 5.84x 10°? | 447x103 ] 6.29x10° | 3.17x10°°

2000 PODL? 7.76 4.26x 10° — —
POD LyapunoWw’ || 3.62x10°2 | 1.12x 102 | 3.47x10* | 413x10°°
Balanced truncatior] 7.36x 102 | 477x 103 | 548x10°° | 2.77x10°®

5000 PODL?2 4.40% 10° — — —
POD Lyapunow’ || 1.80x 101 | 1.09x 10! | 2.03x 102 | 6.09x 103

Lastly, the level of computational resources required famputing the Lyapunov inner product
and the level of computational resources required for perifog model reduction via balanced
truncation [73, 42] are compared. Table 6.3 gives the CPlggifor the sum of the following
operations in the balanced truncation [73, 42] algorithra &sction ofN, the problem size: cal-
culation of the observability Gramian, calculation of ttetrollability Gramian, and calculation
of the balancing transformation (Appendix A.8). All comatibns are performed in serial using
MATLAB's linear algebra capabilities and MATLAB'’s contrtdolbox [2], on a Linux workstation
with 6 Intel Xeon 2.93 GHz CPUs. Both methods exhiilN®) scaling. Although the Lyapunov
inner product computation is costly, as it requires the tsmhuof a Lyapunov equation, it com-
pletes in 2-3 times less CPU time than the balanced truncatgorithm. This is because balanced
truncation requires the solution tffo Lyapunov equations for the observability and reachability
Gramians, as well as the Cholesky and eigenvalue factmmabf these Gramians.
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Figure 6.4. Maximum real part of eigenvalues of ROM system
matrix Ay for electrostatically actuated beam problem

Table 6.3. CPU times (in seconds) for balanced truncation vs.
Lyapunov inner product computations (electrostaticatjuated
beam problem)

N

Method 1250 | 2500 | 5000 | 10,000

Lyapunov Inner Producf 5.08x 10" | 4.60x 107 | 4.02x 10° | 6.09 x 10*
Balanced Truncation || 1.09x 107 | 1.10x 10° | 1.04x 10* | 1.24x 10°

6.2 ROM stabilization via optimization-based eigenvalue eas-
signment

In this section, twanewalgorithms for stabilizing LTI systems of the form (4.18) imodifying
the unstable eigenvalues Af, through a “black-box” post-processing step applied to tiverg
(unstable) ROM system are proposed. These algorithms vex@&aped as a part of the LDRD
project summarized in this report. It will be assumed froms foint onward that the matrif
defining the FOM system (4.18) is stable. Algorithm 2 is thiengiry contribution of this report.
Algorithm 1 is provided, as it served as a strategic fourmtefidr the final development (Algorithm
2). Itis given here not only for the sake of completenessalad because it is shown in Section
6.2.3 that Algorithm 2 can be seen as a variant of Algorithm 1.

6.2.1 Algorithm 1: ROM stabilization via full state feedbad (a.k.a. pole
placement)

The first ROM stabilization algorithm is motivated by the eb&tion that (4.20) is an LTI system,
and, as such, can be stabilized using full state feedbagiglerplacement, methods from control
theory [11, 96]. The general approach of stabilizing an Lydtem using full state feedback is
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Figure 6.5.yom(t) for M = 10 ROMs (FOM = full order model)
for electrostatically actuated beam problem

reviewed below.

Consider the open loop ROM LTI system (4.20), where it is as=iu(t) is given, so thaByu(t)
represents, for instance, a given source for the equaftidresobjective of full state feedback (pole
placement) is to redesign the dynamics of the system (4h20)gh feedback of the state Afy is
unstable, it is desired to redesign the system such thastaide. Towards this end, the open-loop
system (4.20) is transformed into a closed-loop system,aafe@dback controller that positions
the closed loop eigenvalues of the system is developed. ®iestep is to select a control matrix
Bc € RM*J for some integed, and modify the system (4.20) by adding to it the conBelic (t):
xm(t) = Amxm(t) +Bmu(t) +Bcuc(t)

) = Cuxm(t). (6.16)

Here,uc(t) € RY is a control that will be designed to modify the dynamics @ tiiginal system
(4.20) such thatitis stable. For an LTI system represersitimye physical dynamicBg¢ is typically
selected to represent a physical control that can be impmséloe system, e.g., actuation applied
to a boundary of a fluid domain. Next, a linear control law o formuc(t) = —Kcxm(t) is
assumed, wher&c € RM*M is the control matrix, to be determined. Substituting tlis into
(6.16) and rearranging, the following is obtained:

xm(t) = (Am —BcKe)xm(t) +Bmu(t)
)

— Cwxml(t). (6.17)
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The system (6.17) is a system of the form (4.20) but Withreplaced byAy, where
Am = Am — BcKe. (6.18)

The reader can observe that if it is possible to compute tir@omatrix K¢ such thatAy is
stable, the ROM system (6.16) will be stable.

In order to formulate a well-posed ROM stabilization algfom based on the approach outlined
above, a number of questions need to be addressed:

(i) How should the control matriBc be selected? Typically, when applying pole placement
algorithms, aphysicalsystem is stabilized using physicalcontroller. In this case, the
controller matrixBc is added at the level of the algebraic system (6.16). In tbigext,
what doeBc mean? What should it mean?

(i) What eigenvalues should the stabilized ROM matkiy (6.18) be prescribed to have? It is
clear that the eigenvalues should lie in the stable half@ttmplex plane, but what physical
values should they have?

(iif) Does the solutiorK ¢ to the pole placement problem exist?

(iv) How has the stabilization affected the accuracy of tR By modifying the ROM system
(4.20), inconsistencies between the FOM and ROM physics haen introduced.

In this subsection, only question 3, the existence questioih be addressed. Answering this
guestion gives rise to a preliminary ROM stabilization aithon, referred to as “Algorithm 1”.
The remaining questions are addressed through the fononlat “Algorithm 2”, described in
Section 6.2.2.

Before formulating an algorithm which guarantees the exis¢ of the solution to the pole place-
ment problem described above, it is useful to recall thefalhg theorem.

Theorem 6.2.1quoted from [11]): If the paifAm,Bc) is controllablé, there exists a feedback
uc(t) = —Kcxm such that the eigenvalues Af, (6.18) can be arbitrarily assigned.

In general, the paifAm,Bc) may not be controllable. However, it is possible to apply drieen
6.2.1 by working in the controllable and observabéeibspaces oAy and Bc, which can be
isolated through the Kalman decomposition. A detailedudismn of the Kalman decomposition

2An LTI system (4.18) is controllable (a.k.a. reachablepifanyxo, x € RN, there exists@ >0andu:[0,T] — R
such that the corresponding solution satisié® = xo andx(T) = x; [11, 96]. To test for controllability of a linear
system, it is sufficient to check the rank of the controlli@piinatrix

We=(B, AB, .-, AN'1B). (6.19)

The LTI system (4.18) is controllable if and only if the caritability matrix (6.19) is invertible [96, 11].
3An LTI system (4.18) is observable if for aify> 0 it is possible to determine the state of the syst¢ii) through
measurements gft) andu(t) on the interval0, T] [11, 96]. To test for observability of a linear system, itigficient
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can be found in classical control theory texts, e.g., [1], BBe key result of the Kalman theorem
is that the state space can be decomposed into four partgt thgias reachable and observable, a
part that is reachable but not observable, a part that issaahiable but observable and a part that
is neither reachable nor observable. The procedure is sumedan Algorithm 1.

Algorithm 1
e Pick a control matriBc, e.g.,B¢c = 1.
e GivenBc, use the Kalman decomposition to isolate the controllabtk@servable parts of
Awm andBc, call themA? = UAy UT and B&® = UBc respectively.
e Compute the eigenvalugdg®, ..., A% of Afp.
e Reassign the unstable eigenvaluesfjf to make them stable, e.g., foe= 1 to M, set

A= min{REAL), —ReA)} +i - Im(ALO), (6.21)

whereRgz) andIm(z) denote respectively the real and imaginary parts of a complenber

ze C, andi=v/—1.

e ComputeK ¢ such thaiAf — KcBE has these eigenvalues using full state feedback (a.k.a pole
placement) algorithms from control theory.

o SetAy = UT(AfP — KcBL)U.

Typically in full state feedback, the matrB¢ represents a physical control that would be applied
to a physical system of the form (4.20) so as to stabilize siigem. The situation of interest
here is not entirely comparable, as it has been assumed#altysicalsystem underlying (4.20)

is stable (and hence does not need stabilization via full $¢atgback); it is thealgebraicROM
system (4.20) that is unstable, and hence the m&ixs added to the system at the algebraic
level. This scenario complicates the interpretation otl(drerefore the choice oB¢. In general,

it can be argued that the choiceBf does not matter provided the unstable eigenvaluég,pére
controllable and observable given the choicdgf In the numerical example studied beldsg

is selected to be a vector of all ones.

It remains to provide some discussion of approaches foctseiethe eigenvalues of the stabilized
matrix Ay. One possible choice is to replace the real parts of the biestégenvalues oy with
their negatives (6.21), or some negative scaled multipteede values. Another option is to try to
match the eigenvalues of the stabilized ROM madxix with the eigenvalues of the FOM matrix
A (provided the computational resources to compute the FQnealues are available, which
may not be the case for very large systems). In general, genedlues of a stable ROM will lie
on or near the manifold of the eigenvalues of the FOM from Wwhtte ROM was constructed.
This is illustrated in Figure 6.6, which shows the eigengatanifold of the FOM matriXA and

a ROM matrixAp for anM = 20 mode ROM constructed via balanced truncation [73, 42hfor
variant of the international space station benchmark. ¢ty faM = N in a ROM, that is, a ROM

to check the rank of the observability matrix

Wi =(C, CA, CAN-1 ). (6.20)

SR

The LTI system (4.18) is observable if and only if the obsbifity matrix (6.20) is full rank [11, 96].
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is constructed with a full basis of the spal, Ay ~ A (as can be seen from (4.21)), so thaj
will have the same eigenvaluesAs
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Figure 6.6. Eigenvalue manifold of FOM matriXA and ROM
matrix Ay for anM = 20 mode ROM constructed via balanced
truncation for a variant of the ISS benchmark

6.2.2 Algorithm 2: ROM stabilization through solution of constrained non-
linear least squares optimization problem

The primary downside of Algorithm 1 (Section 6.2.1) is it iscleara priori how a particular
choice of the control matriBc and stabilized eigenvalues will affect the accuracy of #sult-
ing stabilized ROM. This problem is remedied in the preseuwtien through the development of
a new algorithm, “Algorithm 2”. In this algorithm, the eigalues of the stabilized matriy
are determined such that the ROM output solution deviategmaily from the FOM output solu-
tion. Hence, questions 2 and 4 in Section 6.2.1 are addresg#ditly. As will be clear shortly,
Algorithm 2 does not require the selection of a control nxaB¢ (question 1).

Consider the ROM LTI system (4.20). Note that it is possiblevbrk out analytically in closed
form the exact solution to this system. The reader may véhidy the solution to this system is
given by

xu(t) = exp(tAm)xu (0) + /0 exp{ (t — 1A} Byu(T)dT. (6.22)

In equation (6.22), exp) denotes the matrix exponential. It is worthwhile to note thes quantity
is not an issue to compute, as the ROM system ma&fjxis small. Given the solution for the
ROM state vector (6.22), the ROM output is given by

ya(t) = Cu [exp(tAM)me) + /O exp{ (t— T)Aw }Buu(T)dT | | (6.23)
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The existence of an analytical solution to the ROM LTI sys{dr@20) motivates the formulation of
the following optimization problem, to be solved for theengalues of the stabilized ROM system:

K
: k k 112
min Y —ymll2-
A k;

(6.24)
st. RgAY) <0i=1,..,L

The optimization is over the unstable eigenvalues of thgimel ROM system matriA, denoted
by AY, fori =1,..,L whereL < M is the number of unstable eigenvaluesqj. The shorthand
yK denotes the FOM output at timg i.e., y* = y(t,). In a model reduction approach based on
an empirical basis computed from a set of snapshots of thHefidglity solution, e.g., the POD
or BPOD method, these values are available at the snapsheg.tiThe shorthang, denotes the
ROM output at timety, i.e., y,'\<,I = ym(ty). It is given by the formula (6.23). The constraint in
(6.24) ensures that the stabilized ROM eigenvalues areeiattible half of the complex plane Here
R€z) denotes the real part of a complex numberC. Equation (6.24) is a constrained nonlinear
least-squares optimization problem with inequality comsts.

Remark that the optimization problem (6.24) is small: theme at mosM dofs, and solving the
problem does not require operating on any matrices thatfasiee<'(N). This optimization prob-
lem can be solved using standard algorithms for constrapédization, e.g., an SQP algorithm
with line search globalization, BFGS for Hessian approxiores, and an interior point method to
handle the inequality constraints [77].

An interesting question that arises is whether the solutiothe optimization problem (6.24) is
unique. A sufficient condition for a minimization problemtbe form

min f (x), (6.25)

wherex € R" is a real vector and : R" — R is a smooth function, to have a unique solution is
for f to be convex [77]. In this case, any stationary pointfas a global minimizer off, and
hence a local minimizer of will be the global minimizer off. It is straightforward to show that
the objective function in (6.24) is not necessarily conv@ice convexity is a sufficient but not a
necessary condition for uniqueness of the solution to {6tBé optimization problem could have
a unigue solution, but this scenario is not guaranteed. Tineenical tests performed in Section
6.2.4 suggest that the optimization problem (6.24) has iregg multiple solutions.

It turns out that it is convenient to implement and solve th&mization problem (6.24) in the
“characteristic variables”, defined ta (t) = S;'xw(t), whereSy' is the matrix that diagonal-
izesAwm, i.e., Ay = SMDMSQll. The steps of the stabilization are detailed in Algorithm\te
that, although it is assumed hekg, is diagonalizable, the extension to non-diagonalizajeis
straightforward. In this case, the eigenvalue decompusiti Algorithm 2 (6.26) is replaced with
the Jordan decomposition.
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Algorithm 2
¢ Diagonalize the ROM matriR:

Am = SuDuSy (6.26)
e Initialize a diagonaM x M matrix Dum.
e Setj=1.
efori=1toM

if RgDw (i,i)) <0
Setf)M(i,i) = Dwm (i, ).
else
SetDu(i,i) = Al
endif
endfor
e Incrementj — j + 1.
e Solve the optimization problem (6.24) for the eigenval{igs} with ym(t) given by

ym(t) =Cm SMexp(tf)M)S,\_,llxM(O)—l-/OtSMexp{(t—r)f)M}S\_AlBMu(T)dT . (6.27)

using an optimization algorithm.
e EvaluateD), at the solution of the optimization problem (6.24).
e The stabilized LTI ROM system is now given by

= Amxm(t) +Bmu(t)

)
) = Cuxm(b). ©29

whereAy = SuDuS.

6.2.3 Connection between Algorithm 1 and Algorithm 2

One notable difference between Algorithms 1 and 2 is thdikeithe former algorithm, the latter
algorithm does not employ directly full state feedback .@.kole placement) routines from control
theory to solve for the stabilized ROM matry,. However, it turns out that it is possible to show
that Algorithm 2 is equivalent to Algorithm 1 for a specificatbe of control matriceBc andKc.

SupposeAy hasL < M unstable eigenvalueg’', each with corresponding eigenvecslr Let5\|§‘
denote the stabilized value #f', obtained by solving the optimization problem (6.24). Teéader
can verify thatAy in (6.28) is equivalent to

Am = Am — BcKe, (6.29)

where
Bc=(s -+, s )erRMt (6.30)
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o O

K = _ 2 D stertm (6.31)

6.2.4 Numerical experiments

The performance of the ROM stabilization algorithms ddssdiin this section is now assessed
on the two benchmarks considered in this chapter: the IS8hoeark, and the electrostatically
actuated beam benchmark, both introduced earlier.

Typically, the size of a reduced POD basis, namdlyis calculated using the energy criterion
(4.6). ThatisM is selected such that the reduced b&8jscaptures some fixed percentage of the
snapshot energy, e.g., 95% or 99% (see [71, 50]). For thégansxonsidered her®| is chosen to

be the smallest integer such that: (1) the bdgjscaptures at least 99% of the snapshot energy, (2)
the resulting POD/Galerkin ROM has at least one unstabknegue, and (3) the POD/Galerkin
ROM goes unstable during the time horizon considered. Thaseg)y of choosing/ is a natural
one given the objective of this chapter: to evaluate the R@Mikzation algorithms developed in
this section.

For the ISS example the performance of Algorithm 1 and théopmance of Algorithm 2 are
evaluated. This comparison is intended to highlight theesiopity of Algorithm 2 over Algorithm
1. For the sake of brevity, results for only Algorithm 2 (ddished in the context of the ISS
example as the superior algorithm) are shown for the elsittically actuated beam example.

To solve the constrained nonlinear least squares optiioizat the heart of Algorithm 2 (6.24),
thef m ncon function in the MATLAB optimization toolbox [1, 77] is empyed. TheAl gorithm
option required by this function is set tat eri or - poi nt with exact (analytic) Jacobians. An
analytic expression for the Jacobian of the objective fiancfor the specific case ai(t) = 0
and one output of interest in (6.24) can be found in AppendB Aeriving and implementing
an analytic Jacobian is recommended over using finite éififlee Jacobians calculated within the
MATLAB optimization toolbox. Since analytic Jacobians aseact, they are accurate. In contrast,
finite difference Jacobians can be inaccurate for some @nubhs a result of an arbitrary selection
of the finite difference increment. Moreover, the solutidritee optimization problem (6.24) is
much faster with exact Jacobian due to fewer required fanavaluations. With exact Jacobians,
the number of function evaluations per optimization stegisstant. In particular, it does not grow
with L, the number of eigenvalues reassigned by the optimizatgmrithm. The defaulf m ncon
settings for this method are used, which can be found in [1].

Note that the m ncon function will compute only real solutions to an optimizatiproblem. In
general the eigenvalues of the mathx, may be complex, however. To allow thei ncon al-
gorithm to compute complex eigenvalue solutions of the R@abization optimization problem
(6.24), a complex-valued functional form fbf may be assumed. In this approaﬁlﬁ,in line 9 of
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Algorithm 2 is replaced with
)\J-‘M—)\J-‘”—i—i-)\jucec, )\j‘”,)\juceR, (6.32)

(wherei = v/—1) and (6.24) is solved fot", A{'° € R subject to the constraint tha}" < 0. Since
complex eigenvalues @), occur in complex-conjugate pairs)i]u has the form (6.32), theky 1
in Algorithm 2 must have the form

It follows that the approach of assuming complex-conjugaie solutions to (6.24) does not give
rise to more dofs than the default approach of solving fol selutions to this problem. In fact,
the former approach has fewer constraints.

The numerical results section includes comparisons ofdlh@fing CPU times for both problems
considered:

e The CPU time required for the time-integration of the FOM.

e The CPU time required for the offline (snapshot collectioading of system matrices/snaptions,
calculation of the POD basis, Galerkin projection, and nuecaésolution of the optimization
problem (6.24)) stage of the POD/Galerkin ROMs.

e The CPU time required for the online (time-integrationpgstaf the POD/Galerkin ROMs.

All computations are performed in serial using MATLAB’s éiar algebra capabilities on a Linux
workstation with 6 Intel Xeon 2.93 GHz CPUs. Note that the FGMU times do not include
the time to discretize the relevant PDEs using the finite el@rmethod and assemble the global
system matrix. This is due to the fact that the matrices dejithe FOM were downloaded from
a model reduction benchmark repository, and access to gefidelity code that generated these
matrices is not available to the authors.

In general, ROMs are employed for many-query and/or rea¢-tanalysis. In these contexts, it is
critical that the online time-integration stage of the RO&&la low computational cost and fast run-
time. Although the offline construction of the reduced ontherdel, which includes the collection
of snapshots, the construction of the POD basis, the Gal@rkijection, and the solution of the
optimization problem (6.24), can be computationally isiga, this step is done onlgnetime
when the ROM is constructed. The cost of this computatiors due affect the run-time of the
online step of the model reduction, the step relevant toyarslsing the ROM. Nonetheless, it
may be of interest how many times the ROM would need to be rating) to compensate the
cost of the (offline) pre-processing step. For this reasstimates of the number of online ROM
runs that would be required to offset the offline ROM cost avergfor each example considered
following the CPU time data (Tables 6.8 and 6.12).
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Figure 6.7. Outputs forM = 20 unstabilized POD/Galerkin ROM
vs. FOM output for ISS problem

International space station (ISS) test case

As before (Section 6.1.1), to generate the snapshots froithwthe POD bases are constructed,
the full order model (4.18) is solved using a backward Euleetintegration scheme with an
initial condition of xN(0) = 1y (N x 1 vector of all ones) and no inpyu(t) = 0). A total of
Kmax= 2000 snapshots are collected, evlity/ap=5x 102, until timeTmax= 0.1 seconds. These
shapshots are used to compute a POD basis of\ize20, and a POD/Galerkin ROM of size
M = 20 is constructed using this basis. For this problemMhe 20 mode POD/Galerkin ROM
is found to be unstable with four unstable eigenvalues. bhasss captures essentially 100% of the
snapshot energy, and the valMe= 20 is the smallest basis size such that the ROM exhibits an
instability. The numerical values of the unstable eigemealareA;' = 2425, A)' = 32.90+ 26.99i,

Ay =3290-26.99, Aj = 2.712. Figure 6.7 shows the FOM outpt) (in red) compared to the
unstabilized ROM output (in blue). The unstabilized ROMpuitdiverges from the FOM output
around tima = 0.05 and approaches~ ast — o« due to the ROM instability. The relative error
érely in the unstabilized ROM output (6.1) is 1737.9.

TheM = 20 mode POD/Galerkin ROM for the ISS problem is stabilizest fiy Algorithm 1, then
by Algorithm 2. These results illustrate the superiorityAdgorithm 2 over Algorithm 1.

Stabilization via Algorithm 1

First, theM = 20 mode unstable POD/Galerkin ROM is stabilized using Atpar 1 with the
control matrixBc selected to be aM x 1 vector of all ones:Bc = 1q. The next step in the
stabilization is to select the desired eigenvalues of thkilted ROM matrixAy. Let A for k =

1,...,4 denote the unstable eigenvaluesAgr, and Ietﬂ&J denotes the corresponding eigenvalues of
Aw (that is, the valueg' will be replaced within the stabilization algorithm). Hetiee following
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functional form forA! will be considered:
A= —a-ReAY) +i-Im(AY), a>0, (6.34)

for k=1,...,4, whereRgz) andIm(z) denote respectively the real and imaginary parts of a com-
plex numberz € C andi = v/—1. The transformation (6.34) flips the sign of the real paraof
unstable eigenvalue &), (thereby making it stable), and scales this value by a pesitbnstant

a. Three choices of the parameteiin (6.34) will be tested here:

e o0 =0.1.
e a—=1.
e a=10.

The objective is to study the error in the stabilized ROM fevezal choices of\i“; The choices
are admittedly ad hoc, as there is no clear guideline for wetigenvalues ofy should be.
Note that asx is increased, the eigenvalugs are pushed further into the left (stable) half of the
complex plane.

Figure 6.8 shows the outputs computed by the three stathiR@Ms obtained using Algorithm
1. The relative errors in the stabilized ROM outputs are giveTable 6.4. All three ROMs are
stable (by construction). The ROM stabilized by Algorithwith a = 1 is slightly more accurate
than the ROM stabilized by Algorithm 1 witln = 0.1. This may lead the reader to conjecture that
the accuracy of the stabilized ROM will improve as the eigdues are pushed further and further
into the left half of the complex plane. However, the ROM giaéd by Algorithm 1 witha = 10
results demonstrate that this is not the case: the ROM vgitigienvalues pushed the most into the
left half of the complex plane is the least accurate.

0.1

0.05f

—FOM
— Unstabilized ROM
_ Stabilized ROM:
‘ Algorithm 1, a = 0.1
! ~ Stabilized ROM:
_0105‘1 AIgorithm 1,a=1
_ Stabilized ROM:
Algorithm 1, o = 10| ‘
0 0.02 0.04 0.06 0.08 0.1
t

Figure 6.8. Outputs forM = 20 POD/Galerkin ROMs stabilized
via Algorithm 1 vs. FOM output for ISS problem
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Table 6.4.Relative errors itM = 20 POD/Galerkin ROM for ISS
problem stabilized via Algorithm 1

ROM éﬁrehy
Unstabilized 17378
ROM stabilized via Algorithm 1 witte = 0.1 | 1.51x 102
ROM stabilized via Algorithm 1 wittor =1 | 1.16x 1072
ROM stabilized via Algorithm 1 witlor = 10 | 2.26x 1072

The numerical results presented here show that Algorithrorksiin the sense that it will stabilize
an unstable ROM. Unfortunately, the accuracy of a ROM gtaddll using this algorithm is in
general unknown before the ROM is stabilized and the ROMwligpcomputed. Moreover, for
some choices of" the accuracy may be unacceptable.

Stabilization via Algorithm 2

TheM = 20 POD/Galerkin ROM for the ISS benchmark is now stabilizeshg Algorithm 2. Let
A for k= 1,...,4 denote the four unstable eigenvaluesApf. Two options for the eigenvalue
solutions to the optimization problem (6.24) are considere

e Option 1: Solve forA! € R subject to the constraint that' < 0 fori =1,...,4.

e Option 2: Solve forAg,A5",A5° A4 € R subject to the constraint thai,A;",A4 < 0 and
setAy = AJT+iASC, A = A" —iAJC (that is,A4' is set to be the complex-conjugate/df:
MY =250

Per the discussion at the beginning of Section 6.2.4, Of@isnmore general than Option 1 and
has fewer inequality constraints. The optimization probl@.24) at the heart of Algorithm 2 is
solved using thém ncon function in MATLAB’s optimization toolbox. The\l gorit hmoption
required by this function is set tat eri or - poi nt , and an initial guess of 1 for all the variables
is used. For functional forms of the eigenvalues given by ligption 1 and Option 2, the opti-
mization algorithm converges to a local minimum solutioness than 30 optimization iterations
and 30 function evaluations. Table 6.5 shows some key irdtion about the convergence of the
optimization algorithm. The reader may observe that fetezations and function evaluations are
required with Option 2 than with Option 1, which has more d¢raists. Figures 6.9 and 6.10 illus-
trate further the performance of the optimization algantior Option 1 and Option 2 respectively.
For both options, the optimality conditions are satisfiedht® specified tolerance at the value of
the optimal solutiofy

An interesting question that arises is how the numbers ineTald change wittM, the reduced
basis size. Numerical experiments reveal that it is not seardy the case that &4 increases,

4For a constrained optimization problem such as (6.24), teedider optimality conditions require that the gradi-
ent of Lagrangian of the objective functiaA{', ..., A") be equal to zero, i.e%E =0forallk=1,...,LwhereL <M

is the number of eigenvalues 8fy stabilized by Algorithm 2. A detailed discussion of this asttier optimality
conditions for the problem (6.24) can be found in [1, 77].
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Table 6.5. Performance of ni ncon interior point method for
Algorithm 2 applied to ISS problem

Algorithm 2
with Option 1 (real
eigenvalues)

Algorithm 2
with Option 2 (complex-
conjugate eigenvalues)

# upper bound constraints 4 3
# optimization iterations 29 27
# function evaluations 30 30
first order optimality at convergencglL|) 4.00x 107 5.51x 10~/

Iteration

(a) Function value

105X 10®  Current Function Value: 0.00683859 x lOfFirst—order optimality (|0 L|): 4.00842e—07
oy ‘ ‘ ‘ ‘
1ee
10 *
¢ =15}
8 95f 3
: <
s S
g E 1t
5 85 =1
o o
() =
= S
S 75! 7 05
7t ¢ ] *
$0000000000000000000000 ¢
6.5 - - - - - 0 $4004000000000000000004
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
(a) Function value (b) First order optimality ((CIL|)
Figure 6.9. Performance of interior point algorithm for Algo-
rithm 2 with Option 1 (real eigenvalues) as a function ofatem
number (ISS problem)
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Figure 6.10. Performance of interior point algorithm for Algo-
rithm 2 with Option 2 (complex-conjugate eigenvalues) asrec{
tion of iteration number (ISS problem)

more optimization iterations and function evaluationsramgiired to obtain the solution to the op-
timization problem (6.24). The performance of the integomt method depends on a number of
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factors, including: (1) the number of optimization dof®(j.the number of unstable eigenvalues
of a ROM), (2) the number of upper bound constraints, (3) tlegacter of the objective function,
(4) the proximity of the initial guess to the optimal solutjcand (5) the tolerances used in the
optimization algorithm; noM, the reduced basis size, directly. Some additional pedoia re-
sults of thef m ncon interior point method for Algorithm 2 applied to the ISS pkern for different
(larger) values oM are given in Appendix A.10 (Tables A.3—A.4). For the ISS peol the ROM
does in general become more unstable with increddginigut more optimization iterations are not
always required (Table A.3).

The eigenvalue solutions to the optimization problem (v2dh both Option 1 and Option 2 are
given in Table 6.6, compared with the values of the originadtable eigenvalues &y. It is
interesting to observe that the eigenvalues computed bgptimization algorithm with Option
1 are very different in their numerical values than those pated by the optimization algorithm
with Option 2. Both are local minimizers of the optimizatimction (6.24). As discussed in
Section 6.2.2, the optimization value is not guaranteecttorbque.

Table 6.6. Original (unstable) eigenvalues @&fy for M = 20
mode POD/Galerkin ROM and new stable eigenvalues computed
using Algorithm 2 (ISS problem)

Algorithm 2 Algorithm 2
Original UnstableA with Option 1 with Option 2
(real eigenvalues) (complex-conjugate eigenvalues)
AY 2.42x 10° —-1.32 —-1.98
AY | 329%x 101 +2.70x 10% | —2.12x 1072 —6.47x 1073+ 1.42x 104
31 329x10t-2.70x 10% | —2.13x 1072 —6.47x 1073~ 1.42x 10%i
2§ 2.71 —~1.33x 1074 —~1.38x 1074

Table 6.7 gives the error in the ROM algorithm relative tof@#Vl output for arM = 20 POD/Galerkin
ROM stabilized via Algorithm 2 with Option 1 and Option 2 fdret ISS problem. Both options
give a ROM with a relative error between52o and 26%. This is a significant improvement in
accuracy compared to the same ROM stabilized via Algorithfiable 6.4). Most importantly,

in contrast to Algorithm 1, Algorithm 2 guarantees some ll@f@ccuracy in the stabilized ROM,
as it minimizes the error in the ROM output by constructiorc&l that the accuracy of a ROM
stabilized via Algorithm 1 is unknowa priori, and it may require some trial and error to obtain a
stabilized ROM with an acceptable error (Section 6.2.4).

Figure 6.11 shows the output computed from ROMSs stabilizaaguAlgorithm 2. The reader may
observe that the stabilized ROM outputs are in much bettereagent with the FOM output than
the ROMs stabilized using Algorithm 1 (Figure 6.8).

Table 6.8 summarizes the CPU times for the time-integrattep of the FOM, in addition to the
CPU times for the offline and online stages of e- 20 POD/Galerkin ISS ROM. The reader can
observe by examining Table 6.8 that tde= 20 online stage of the POD/Galerkin ROM requires
approximately 45 times less CPU time than the time-intégnagtage of the FOM. To offset the
total preprocess time of the ROM (the time required to rurROM to collect snapshots, calculate
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Table 6.7.Relative errors itM = 20 POD/Galerkin ROM for ISS
problem stabilized via Algorithm 2

Unstabilized 1.74x 103
ROM stabilized via Algorithm 2 2
with Option 1 (real eigenvalues) 2:59x10°
_ R_OM stabilized via A_Igorlthm_ 2 ?.52>< 10-2
with Option 2 (complex-conjugate eigenvalugs
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Figure 6.11.Outputs forM = 20 POD/Galerkin ROMs stabilized
via Algorithm 2 vs. FOM output for ISS problem

the POD basis, perform the Galerkin projection, and soleeojptimization problem (6.24)), the
ROM would need to be run approximately 53 times. It is wortheto note that the optimization
step of the model reduction, which consists of the solutibthe optimization problem (6.24) is
very fast: it takes less than a minute to complete.

Electrostatically actuated beam test case

The second numerical example is that of the electrostatiaatuated beam, detailed at the begin-
ning of this chapter. This example tests the performancdgdithm 2 on a problem defined by a
dense matriA and from a different application than the ISS example. Ttargde also demon-
strates the methodology presented in this section on arlaogde problem with has a forcing term

(Bmu(t) #0).

To generate the snapshots from which POD bases are comestruice full order model (6.5) is
solved using a backward Euler time integration scheme witm#ial condition ofz(0) = 0 and
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Table 6.8. Time-integration CPU times for ISS problem: FOM
vs. M = 20 POD/Galerkin ROM stabilized via Algorithm 2

Model | Operations | CPU time (sec)
FOM Time-Integration 1.71x 10°
Snapshot collection (FOM time-integration) 1.71x 107
Loading of matrices/snapshots 6.99x 102
ROM - offline stage POD 6.20
Projection 8.18x 1072
Optimizatiort 2.28x 10t
ROM - online stage Time-Integration 3.77

*Optimization times reported are means of the time requoelve (6.24) with real eigenvalues and the time
required to solve (6.24) with complex-conjugate eigensalu

an input corresponding to a periodic on/off switching,i.e.

u(t) = { 1, 0.005<1t<0.01,0.015<t<0.020.03<t<0.035

0, otherwise (6.35)

A total of Kmax= 1000 snapshots are collected, evtyap= 5 x 10° seconds, until tim@ma=
0.05 seconds. From these snapshotsiiaa 17 mode POD/Galerkin ROM is constructed. The
ROM is found to be unstable, with four unstable eigenvalliégse eigenvalues have the following
numerical valuesd;' = 16,053,A5' = 48.985,A5' = 12.650,A; = 0.05202. The basis si2d = 17

is selected since thls is the smallest integer for which B&IRexhibits an instability. It captures
effectively 100% of the snapshot energy. Figure 6.12 shbe/5&OM outpuy(t) (in red) compared
to the unstabilized ROM output (in blue). The relative elirothe unstabilized ROM output (6.1)
evaluates tdaN (“not a number”) on a finite precision arithmetic machine tlueverflow caused
by the ROM instability. TheM = 17 mode POD/Galerkin ROM is stabilized by Algorithm 2.
Algorithm 1 is not considered for the sake of brevity, andsithe superiority of Algorithm 2 has
been established already.

Stabilization via Algorithm 2

TheM = 17 POD/Galerkin ROM for the electrostatically actuatedrbdeenchmark is stabilized
using Algorithm 2. The four unstable eigenvaluesAgj will be denoted byA/ for k=1,...,4.
Similarly to the ISS test case, two options for the eigernwaloiutions to the optimization problem
(6.24) will be considered:

e Option 1: Solve forA! € R subject to the constraint that' < 0 fori =1,...,4.

e Option 2: Solve forA;",A{'°, A3", A5¢ € R subject to the constraint that", A}, < 0 and set
Al = A" HIAYC AY = )\“r |Af°, )\“ = )\“r +iA3S A} = A5" —iAfC (that is, A4 is taken to
be the complex- conjugate At Ag = )\2 .

Option 2 is more general than Option 1 and has fewer inequatihstraints; however, Option 1
may be more consistent with the system dynamics, as thehlagigenvalues ok are all real. As
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Figure 6.12. Outputs forM = 17 unstabilized POD/Galerkin
ROM vs. FOM output for electrostatically actuated beam prob
lem

before, thd m ncon function in the MATLAB optimization toolbox will be used tmkse the opti-
mization problem (6.24), with th&l gori t hmoption set td nt eri or - poi nt and an initial guess
of —1 for all four variables optimized over in (6.24). For the étional form of the eigenvalues
assumed in Option 1, the algorithm converges in 60 optinuraterations, and requires 64 func-
tion evaluations. For the functional form of the eigenvalassumed in Option 2, which has less
constraints than Option 1, fewer optimization iterations &unction evaluations are required to
achieve convergence: 31 optimization iterations, and 82tfan evaluations. Some key informa-
tion about the convergence of the optimization algorithmbioth of these options is summarized
in Table 6.9, and Figures 6.13 and 6.14. For both optiongptienality conditions are satisfied to
the specified tolerance at the value of the optimal solution.

Table 6.9. Performance of ni ncon interior point method for
Algorithm 2 applied to electrostatically actuated beanbjgm

Algorithm 2 Algorithm 2
with Option 1 (real| with Option 2 (complex-
eigenvalues) conjugate eigenvalues)

# upper bound constraints 4 2

# optimization iterations 60 31

# function evaluations 64 32
first-order optimality at convergend¢#IL|) 2.27x10°7 8.43x 1077

Similarly to the ISS problem, Appendix A.10 (Tables A.5—pPgéves some additional performance
results of the m ncon interior point method for Algorithm 2 for different (largevalues ofM.
ROMs with larger basis sizes possess in general more uagm@nvalues, and more optimization
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Figure 6.13. Performance of interior point algorithm for Algo-
rithm 2 with Option 1 (real eigenvalues) as a function ofatem
number (electrostatically actuated beam problem)
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Figure 6.14. Performance of interior point algorithm for Algo-
rithm 2 with Option 2 (complex-conjugate eigenvalues) asrecf
tion of iteration number (electrostatically actuated bgaoblem)

iterations are required to obtain the solution of the optation problem (6.24) using the interior
point method.

The solutions obtained by Algorithm 2 with both Option 1 anpitiOn 2 are given in Table 6.10,

compared with the values of the original unstable eigemsatiiA . As for the ISS benchmark, the
eigenvalues computed by the optimization algorithm withi@pl are different in their numerical

values from those computed by the optimization algorithtihv@ption 2. This suggests that the
optimization function (6.24) for this problem has multipdeal minimizers/minima.

Table 6.11 gives the error in the ROM algorithm relative te #OM output for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1&®ption 2. For both options,
the relative error in the stabilized ROM output is approxiena2%.

Finally, Figure 6.15 shows the output computed from ROMbiBred using Algorithm 2. There
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Table 6.10. Original (unstable) eigenvalues 8fy for M = 17
mode POD/Galerkin ROM and new stable eigenvalues computed
using Algorithm 2 (electrostatically actuated beam prot)le

Algorithm 2 Algorithm 2
Original UnstableAy, | with Option 1 with Option 2
Al 1.61x 10¢ —6.88x 10° | —1.16x 10°— 2.25x 10
AS 4.90x 10t —354x 107 | —1.16x 10°+2.25x 10%
AY 1.27x 10t ~1.97x10* | —3.32x 10°— 1.81x 10¥i
AY 5.20x 1072 ~1.40x 10* | —3.32x 10°+ 1.81x 10¥i

Table 6.11. Relative errors itV = 17 POD/Galerkin ROM for
electrostatically actuated beam problem stabilized vgo#ithm 2

ROM | ey
Unstabilized NaN
ROM stabilized via Algorithm 2 5
with Option 1 (real eigenvalues) 1.94x 10
ROM stabilized via Algorithm 2 02x 10-2
with Option 2 (complex-conjugate eigenvalues?'

is good agreement between the FOM output and stabilized R@pucs.

25
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Figure 6.15. Outputs forM = 17 POD/Galerkin ROMs stabi-
lized via Algorithm 2 vs. FOM output for electrostaticallgtaated
beam problem

Table 6.12 summarizes some CPU times for the electrodtgtmetuated beam problem: the CPU

times for the FOM, as well as the CPU times for the offline antinenstages of thévl = 17
POD/Galerkin electrostatically-actuated beam ROM. Tiselts in this table reveal that the online
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stage of the model reduction, the stage relevant to rea-tiatculations involving the ROM, took
only 6.78 seconds, compared td@x 10* seconds for the time-integration stage of the FOM. To
offset the total preprocess time of the ROM (the time reqlioerun the FOM to collect snapshots,
calculate the POD basis, perform the Galerkin projectiod solve the optimization problem
(6.24)), the ROM would need to be run approximately 10* times. This large number of online
ROM runs required to offset the offline ROM cost is due to tligdsCPU time associated with the
FOM run for this large dense problem. As for the ISS probldra,dptimization step of the model
reduction does not contribute significantly to the CPU tirhthe offline stage of the ROM, taking
just 1.5 minutes.

Table 6.12. Time-integration CPU times for electrostatically ac-
tuated beam problem: FOM vl = 17 POD/Galerkin ROM sta-
bilized via Algorithm 2

Model | Operations | CPU time (sec)
FOM Time-Integration 7.10x 10*
Snapshot collection (FOM time-integratioh) 7.10x 10*
Loading of matrices/snapshots 5.17
ROM - offline stage POD 1.09x 10
Projection 2.55x 10
Optimizatiort 8.79x 10
ROM - online stage Time-Integration 6.78

*Optimization times reported are means of the time requoelve (6.24) with real eigenvalues and the time
required to solve (6.24) with complex-conjugate eigengalu

6.3 Summary

It is demonstrated in this chapter that a discrete countegbahe symmetry inner product devel-
oped in Chapter 5 is a weightéd inner product obtained by solving a Lyapunov equation, first
derived in [81] by Rowle\et al. For completeness, this inner product, referred to as thapupov
inner product”, is re-derived here, and it is shown usingahergy method that this inner product
gives rise to stable ROMs constructed via discrete prajectiThe performance of POD ROMs
constructed using the symmetry and Lyapunov inner prodgcéssessed on several numerical
examples for which POD ROMs constructed in tfeénner product manifest instabilities.

The key properties of the symmetry inner product and Lyapumeer product are summarized in
Table 6.13. Both inner products are weightedinner products and have the same origin: they
are induced by the Lyapunov function for the governing systé equations. The symmetry inner
product is a continuous inner product derived for a specii& Bystem of the form (5.1). Projec-
tion in this inner product requires access to the governibg$? which gives rise to a projection
algorithm that is embedded. The Lyapunov inner productssréte, on the other hand, and op-
erates on an LTI system of the form (4.18) arising from themszation of a PDE of the form
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Table 6.13. Comparison of symmetry inner product and Lya-
punov inner product

Symmetry Inner Product (5.16) \ Lyapunov Inner Product (6.10)
Continuous Discrete

For linear PDE system of the form For linear ODE system of the form
. 2 .

A+ A5+ Kij grge +Ga =1 XN = AXy

Defined for unstable systems but

time-stability of ROM is not guaranteedUndeflned for unstable systems

Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Computed numerically
by solving a Lyapunov equation
Sparse Dense

Derived analytically in closed form

(4.17) in space using some numerical scheme, e.g., the @l@teent method. Projection in the
Lyapunov inner product is therefore a black-box algoritta®,only theA, B andC matrices in
(4.18) are needed; in particular, access to the governingtems isnot required. The symmetric
positive definite matrix that defines the Lyapunov inner piciccan also be computed numerically
in a black-box fashion by solving a Lyapunov equation. Thistexce of a solution to this Lya-
punov equation is certain only if the full order system (4.iE8stable; hence the Lyapunov inner
product is not defined for unstable systems. In contrastsynemetry inner produds defined
for unstable systems. In this case, a ROM constructed inrthex product will be energy-stable,
by construction. However, it will not be time-stable, ii&may produce (physical) solutions that
are unbounded d@s— «. The discussion above may lead the reader to prefer the byapun-
ner product to the symmetry inner product, as the formerripmeduct can be computed in a
black-box fashion for any stable linear system, and can led ts build a ROM for this system
without accessing the PDEs. One of the biggest drawbacksedfytapunov inner product projec-
tion approach involves its large computational cost. Teesolumerically the Lyapunov equation
that defines this inner producf](N3) operations are required. Moreover, since the matrix that
defines the Lyapunov inner product is typically dense (intiast to the matrix defining the sym-
metry inner product, which is sparse), at le@$N?) storage is required [43]. As a result, creating
ROMSs using the Lyapunov inner product may not be practicasystems of very large size. The
Lyapunov inner product may nonetheless be preferable tmbatl truncation, which requires the
solution of two Lyapunov equations, and the storage of twan@ans, in addition to Cholesky
and eigenvalue factorization of these Gramians. For laogde unsteady problems, the symmetry
inner product combined with the continuous projection apph is recommended by the authors,
despite its more involved implementation.

In the second part of this chapter, a new approach for staiglunstable reduced order models for
LTI systems through aa posterioripost-processing step applied to the algebraic ROM system is
developed. This stabilization step consists of a reassgof the eigenvalues of the ROM system
matrix. First, it is shown how the system'’s eigenvalues cambdified by adding to the system a
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linear control term, and solving for the control matrix ugiall state feedback (a.k.a. pole place-
ment) algorithms from control theory. This approach wiklg a stable ROM provided the ROM
system’s unstable eigenvalues are controllable and adisiervhowever, although the stabilized
ROM will be stable, it may not be accurate. To ensure accuratlye stabilized ROM, a second
algorithm is developed, in which the eigenvalues of theibtaldl ROM system are computed by
solving a constrained nonlinear least-squares optinozgdroblem in which the error in the ROM
output is minimized. This problem is sma (¢ (M), whereM is the number of dofs in the ROM),
and therefore computationally inexpensive to solve ustagdard optimization algorithms. The
second stabilization algorithm is the primary contribataf this chapter, but both algorithms are
presented and evaluated, as the first algorithm led to timeuiation of the second. The proposed
ROM stabilization approaches are applicable to ROMs cootd usingany choice of reduced
basis foranyapplication. The two algorithms are evaluated on two beraskm the ISS problem
and the electrostatically actuated beam problem. Nunidests reveal that the second algorithm
effectively stabilizes an unstable ROM, delivering a medifROM that is both stable as well as
accurate.

6.4 Prospects for future work

An interesting and useful future research endeavor is thension of the “ROM stabilization
via eigenvalue reassignment” method (Algorithm 2) desatiln Section 6.2 to general nonlinear
problems and predictive applications.

For nonlinear problems with stable fixed points and/or linyitle solutions (e.g., the classical
fluid mechanics problem involving flow around a cylinder),aural extension of the algorithm
would involve: (1) determining the stable fixed points of 8ystem, (2) linearizing the system
around these points, and (3) using the algorithms develop®ection 6.2 of this report to stabilize
the linearized system. Extensions of Algorithm 2 to genednlinear problems would require a
precise definition of stability, and perhaps a reformulatwd the optimization problem (6.24), as
it is likely not possible to work out analytically the expsés foryyw(t) (6.23) for the general
nonlinear case.

In order to use Algorithm 2 in predictive applications, thalslized ROM must be constructed
such that it is robust with respect to parameter changes.thigran error indicator that would
estimate the ROM error in a regime for which high-fidelity gslaots are not available is required.
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Appendix A

A.1 Gronwall's lemma

Gronwall’s lemma (also known as Gronwall’s inequality)osls one to bound a function that is
known to satisfy a certain differential or integral inedtyaby the solution of the corresponding
differential or integral equation [41]. The differentiairin of this inequality is used herein:

X(t) < Bt)X() = X(T) < x(0)elo A9, (A1)

for B € L%, t, T > 0.

A.2 Linearized compressible Navier-Stokes equations witthe
viscous work terms included

In Section 5.2.2, the linearized compressible Navier-&aquations with the viscous work terms
omitted were given (5.26). The full version of these equatjonamely the equations with the
viscous work terms included, is now given. In this case, theegning system (in non-dimensional
form; Appendix A.3) is as follows:

q + (A —A)d — [Kijd/j]; +Gq =0, (A.2)

instead of (5.26) where th; for i = 1,2,3 matrices are given by:

0 0 0 0O 0 0 0O 0O
0 0 0 0O 0 0 0O 0O
2 5 _ 2
Ai=Z| o o oo0of, A=Z|o0o o o 00,
T1p TioTiz 0 O Top T2 T3 0 O
0 0 0 0O 0 0 0O 0O
0 0 0O 0O (A-3)
) 0 0 0 00
As=2| 0 0 0 00
T31 T2 T3 0 O
0 0 0O 0O

Here,R denotes the dimensionless gas constant (Appendix A.3)ré&rhaining matrices in (A.2),
as well as the symbols appearing in (A.3), are defined in @e&ti2.2.
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Note that the stability result of Corollary 5.2.1 breaks ddwthe casé\; # 0, i.e., in the presence

of viscous work, which can offset the energy balance of thiMR@stem. To the authors’ knowl-

edge, the viscous work terms are invariably neglected frloenlinearized compressible Navier-
Stokes equations by researchers studying energy-syatiilihese equations [47, 4]. The exten-
sion of the energy-stability symmetrization approach @nésd in Section 5.2 to the linearized
compressible Navier-Stokes equations in which the viseau& terms are retained (A.2) would

be a worthwhile future research endeavor.

A.3 Non-dimensionalization of the compressible Navier-$kes
equations

In this section, the non-dimensionalization of the comgitde Navier-Stokes equations is detailed.
Let Uret, Pref, Tref @andLies denote the reference (non-dimensionalization) valuegherfluid
velocities, density, temperature and length scales réspBc Given these values, the reference
pressure, speed of sound and time scales are given by:

Pref = Prefurzeﬁ
Cref = /YR Tef, (A.4)

tref = —
ref Uref ’

whereR is the universal gas constant and the ratio of specific heats. For viscous problems, let
Ures denote reference value for the viscogityThen, the reference value for the viscositys

2
Aref = _§Urefa (A.5)

from Stokes’ hypothesis. Typically the reference valuetierthermal diffusivityke+ is given.

If T denotes the dimensional temperature @ndlenotes the dimensionless temperature, the rela-
tionship between the two is:

p>(<
~ R
wherep* andp* denote the dimensionless pressure and density respgcavelR* denotes the
dimensionless gas constant:

T* (A.6)

RT,
R = 1, (A.7)
C
ref
with R denoting the dimensional gas constant.
The Reynolds numbeRg is given by
Re— M, (A.8)
Hret
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and the Prandtl numbePr, is given by

pr — SpHref (A.9)

Kref

with ¢, denoting the specific heat at constant pressure. The refetdach number is:

u
Mgs = —2F (A.10)

Cref

For the isentropic compressible Navier-Stokes equatiSest{on 5.3.3), the reference value for
the enthalpyh, denoted b+, is needed. It is straightforward to work out thgi; is given by:

Prer = % — . (A11)

(A.11) is also the reference value for the internal enezgy,

Eref = Upef- (A.12)

A.4 Proof that the total energy inner product (5.59) for the
compressible Navier-Stokes is a valid inner product

Here, it is verified that (5.59) is a valid inner product, byecking that the four inner product
axioms hold.
(i) Bilinearity: (g'+09?,0%)c = (a5, 0®) ¢ + (02,03 .

(@ a2 = Jod (@ +a?)p® +a® b +b@)+ (@Y +a)al’ + (o +a)a’
+(aé)+a§>) “)dQ

= f ( 3 +a@b® +a®b® + a®b?@ +alPal® + a?al® +allal?
(2) ,(3

+a5a +a3 ES +a3>ag>)dg

= Jo} (aW6® +a¥b + e + &V’ + afalY ) do

+ Jo 3 (a®0® +a¥b@ 1 aPa¥ + ¥ + sl ) do

= (a%,0%)g + (0%, 0%)¢ -

(A.13)

(i) Linearity: (agl,q?)g = a (g*,0?), fora € R.
(aql’ql)E — fQ % <aa(1)b(2) + aa@p@® + cra(ll)a(lz) + aaél)aéz) + aaél)aé2)> do A4
=a(a"¢°). (A14)
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(i) Symmetry:(gt,g%) = (9%, 9%) .

(L) = fo3(a¥b?+a@bl +ala? +ala? +alla?)d .
_(¢aY (A.15)
HMJE
(iv) Positive definitenessn,q)g > 0and(q,q)g = 0if and only ifq = 0.
(9,9)g =Er >0 (A.16)
whereEr is defined in (5.60), since,e > 0 (to be physical).
Suppos€q,q)g = 0. Then, from (5.60):
Jo (ab+ 3@z +a2+ad)da =0, (A.17)
or
3 Jolad+a3+a3ldQ = — [pabdQ. (A.18)

The left-hand-side of (A.18) is necessariy0. The right-hand-side is necessariy0 since
ab= a’e= peandp,e> 0. The only way for this to be true is éf = O.

O

A.5 Boundary conditions for compressible fluid ROMs constricted
via continuous projection

Per the discussion in Section 4.3.3, ROMs constructed ubmgontinuous projection approach
may not automatically inherit the boundary conditions @f tinderlying FOM. Lef € R2 denote
the domain on which a problem of interest is posed, anddetienote the boundary of this domain.
It is useful to partitiordQ as follows:

0Q =0QrUIQWUIQ, (A.19)

with d0QF NdQwW N IQ = 0. In (A.19), 0QF, dQw and dQ, denote the far-field, solid wall
and inflow boundaries, respectively. Figure A.1 illustsatee partition o0Q (A.19) for a cavity
geometry. In this figure, boundary 1 represei@, boundary 2 represen#2r, and boundary 3
representgdQyy.

For viscous fluid problems, the relevant boundary condiiodQyy is typically a no-slip condition
on the velocities and adiabatic wall condition on the terapee [55]; for inviscid fluid problems,
a slip wall condition on the velocities is the physicallyaent condition o@Qyy [57].

The far-field boundary Qf is an artificial boundary introduced due to the fact that therigary
Q used in a fluid simulation is by construction finite, in costréo the infinite physical space
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Figure A.1. Partition of boundaryQ for the cavity configuration
(2 =0Q = inflow boundary, 2 =9Qf = far-field boundary, 3 =
0Qyw = solid wall boundary)

on which the physical problem is posed. Without far-field hdary conditions, non-physical
reflections of unsteady waves may be observed in the far-fiehkdese unwanted reflections can
affect the accuracy of the simulation and possibly lead toerical instability.

At the inflow boundaryQ,, an inflow solution profile is typically prescribed using cheteristic
variables [57].

One way to implement boundary conditions in a ROM constdiogng the continuous projection
method is through a weak formulation. Consider a system w$exwation laws of the form (5.1).

Let @, (x) denote a reduced basis mode. Projecting (5.1) gptand integrating the viscous terms
by parts, the following is obtained:

JKj
Jo AP+ [ Ai Z1@dQ + |, aﬁlgg‘pkdg“‘fsz kK,qudQ

(A.20)

— 5o Kij @ginidr + [ GagdQ = [, f@dQ,
fork=1,...,M, wherenj is the j!" component of the outward facing normald®. The reader can
observe from (A.20) that if a homogeneous Dirichlet bougidandition is desired 0dQ (e.g., the
no-slip boundary condition) and the reduced bases m@gdeasitisfy this boundary condition, the
boundary integral in (A.20) will vanish, and no special iemplentation of the boundary condition
in the ROM is needed. Otherwise, the boundary condition geémented by substituting the value
of @, and/or its derivatives into the boundary integral in (A.20)the case of an inhomogeneous
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Dirichlet boundary condition, it may be necessary to int¢gthe inviscid terms in (A.20) by parts
as well in order to apply the boundary condition [57].

For a discussion of the implementation of solid wall bougdainditions in a compressible fluid
ROM constructed using continuous projection, the readeefesrred to [57, 19]. Here, some
discussion of the far-field boundary condition and its impdatation is provided. A numerical
study of this boundary condition on ROM stability and aceyravas begun during this project,
and it would be worthwhile to continue this work in the future

Note that an additional way to ensure that a ROM solutionegetsthe FOM boundary conditions

in the case of the nonlinear compressible Navier-Stokestems (one that may be studied in
future work) is to factor out the base flow (represented byitekePOD mode; Figure 5.15(a)) from
the solution vectorg(x,t) —q(x). In the approach taken in Chapter 5, the nonlinear ROMs are
constructed for the full state vectq(x,t). Suppose the POD modes satisfy some steady non-zero
Dirichlet boundary conditions consistent with those infi@M. If the base flovg is not subtracted
from the ROM solution (a linear combination of these mod#s)yalue at the boundaries could
evolve in time, leading to incorrect dynamics predictedtmsyROM [14].

A.5.1 Non-reflecting far-field boundary conditions implemented via the sponge
region method

As discussed above, an appropriate far-field boundary tonds one that will suppress the reflec-
tion of waves from the outer computational boundaries (a2 in Figure A.1). This boundary
condition, known as the non-reflecting boundary conditan be implemented using a sponge
region method. LefspongeC Q denote the sponge region, a region near the outflow boundary
(shaded in yellow in Figure A.1). Suppose, without loss afagality, that the sponge region is
given by:

Qsponge= {X2 1 X2.s < X2 < Xp max X1, X3 € Q}, (A.21)

whereQ is a domain whose boundaries are aligned withXhex; andxs coordinate axes, with
max,{Q} = xomax€ R andxzs € R, with Xo s < Xomax. Suppose also that the governing PDEs

have the form:

Z—? +.2(q)+.4(q) =0, (A.22)

where_#" is the nonlinear operatory’ is the linear operator, angl is the vector of unknowns.
The sponge region implementation of the far-field non-réfigcboundary condition amounts to
adding a source terfigpongeto (A.22) to yield a system:

0
a_?+$(q)+</1/(q> :fspongéma (A.23)
where
X2—X2 s Qtarget—Q :
fspongdd) = { O'sponge(xZ_’maX_XZS) < At >’ n Qspo.nge (A.24)
0, otherwise
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In (A.24), Gtarget is @ vector of “target” values for the variables in the sporggonQsponge and
Osponge< R is a parameter controlling the “strength” of the spongeaegihe reader can observe
by examining (A.24) that the sponge region implementatibthe far-field boundary condition

is effectively a penalty formulation, witbispongerepresenting a penalty parameter that penalizes
the deviation ofg from Qtarget in the far-field. The symbaht in (A.24) is the time step used in
advancing numerically the simulation forward in time.

Plugging (A.24) into (A.23) and rearranging, the followisgobtained:

0

0_? +2(d) + Zspongdd) + -4 (d) = Ssponge (A.25)
where

@ __ Osponge max{X, — X5, 0} )

spongdd) = At Xo o Xo.s g, (A.26)
and
O max{x, — X2 s, 0}
Ssponge= szt;nge( — X:s ) Gtarget- (A.27)

The operator defined hy’sponge(A.26) gives rise to a mass-like matrix upon discretizatidhe
vector (A.27) is a forcing (load vector) term.

In the special case of the linearized PDEs, the system wélspionge layer source term has the
form:

o | ()=t / A28
It q)= sponge{q )s (A.28)

whereq’ = q — qis the fluctuation vector, witly denoting the (steady) mean flow. In this case,

o. ( X2—X2 s ) <q{arget_q/> in o
fspong&d) — sSponge! X2, max—X2.s At ) spo.nge (A29)
0, otherwise

Whereqfrarget = OTarget — C_I

The capability to specify a non-reflecting boundary conditvia the sponge region method has
been added t&pirit as a part of this LDRD project. The implementation of this thdary
condition has been verified on a simple test case involvivigand flow inside a duct (below). The
example demonstrates that a ROM with no boundary conditionstructed from a FOM in which
the non-reflecting far-field boundary condition is specifiggly not reproduce accurately the FOM
solution dynamics. Thisissue can be remedied by implemegtitie far-field boundary condition in
the ROM using the sponge region method. It would be worthauisilexamine the effect of the far-
field non-reflecting boundary condition on the compressihigty simulations of interest in future
work. It is conjectured that including the far-field boungaondition can improve the stability
properties of a ROM by damping out any reflections that prapafack into the domain through
the outflow boundary, which could destabilize the ROM. It [soaconjectured, as suggested in
[39], that if the domain is large enough, the implementatibthe far-field boundary condition
may not be necessary.

117



Proof of concept: non-reflecting far-field sponge region bondary condition applied to duct
pressure pulse test case

The implementation of the non-reflecting far-field boundaogdition via the sponge region method
in Spirit is tested on a 1D test case involving an inviscid pressureepula duct. The domain

Q = (0,50) € R is discretized using 501 points, and extruded inxtph@ndxs directions by one
element to yield a 3D mesh for ti8pi ri t run. The free-stream and reference conditions are as

follows:
Pref = 101,325 Pa

Tret = 300 K7
Uef = 1044 m/s
Pret = 1.172 kg/n¥.

The problem is inviscid. The pressure pulse is triggered tsmasoidal forcing for thex;—
momentum equation of the form

(A.30)

fu, (t) = 0.005ure cOS(2007t), (A.31)

in the region for whichx; € (1,1.5). In the high-fidelity fluid codeSl GVA CFD, a sponge layer
far-field boundary condition is prescribed near the outflourdary

The boundary condition is of the form (A.24) but withreplacingx,. The parametergspongeand
OTarget are as follows:

Osponge= 0.01, (A.33)
U1 target 104.4 m/s
U2 target 0
Otarget = | U3target | = 0 ) (A.34)
Prarget 1.172 kg/n?
Ttarget 300 K

(in dimensional variables). The high-fidelity simulatidrtloe duct pressure pulse test case is runin
SI GVA CFD until time Thax= 0.5 seconds. A total dknax= 1000 snapshots are collected (taken
every Atsnap= 5 x 10~* seconds), from which a 20 mode POD basis is computed. A 20 mode
POD/Galerkin ROM is then constructed for the linearized pressible Euler equatiohssing the

L2 inner product, both withds ponge= 0.01) and without ¢sponge= 0) the sponge region boundary
condition applied in the far-field. Figure A.2 shows a timstbiy of the ROM coefficienta (t)
anday(t) compared with the projection of modes one and two onto thpstras (5.69) for both
cases. The results are as expected: the ROM with the spoyejedaforcement of the far-field
boundary condition (Figure A.2(b)) represents much bettersnapshot dynamics than the ROM
without the sponge layer enforcement of the far-field boupdandition (Figure A.2(a)). Since
the POD modes do not satisfy strongly the far-field boundangdtion, the latter ROM is not fully
consistent with the FOM.

1The linearized equations are appropriate here as the pnableamics are effectively linear.
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Figure A.2. Time history of modal amplitudes fod = 20 mode
L2 linear ROMSs (duct pressure test case)

A.6 Additional results for viscous laminar cavity problem with
Kmax= 500snapshots

In this section, some additional results for the viscoudramcavity problem (considered in Sec-
tion 5.5.3) are given. The same Reynolds numbBesz~ 1000 andRe~ 1500, as before are
considered. Now, however, a total I6f,ax = 500 snapshots are collected fr@&nGVA CFD, taken
everyAtsnap= 1.0 x 104 seconds, starting at time= 5.0 x 102 seconds until tim&@mayx= 0.1
seconds. The snapshots are used to construct POD basee &f 4i@, 15 and 20 modes in the
various inner products evaluated (for each Reynolds nummdesidered), as before, but now the
ROMs are run up to tim&,ax= 0.1 seconds. The snapshot energies captured by the POD bases ar
approximately the same as before (Table 5.8), and the dd¢hg singular values of the snapshot
matrix is also comparable (Figure 5.16).

Tables A.1-A.2 reveal that the ROMs evaluated (Table 5.2)atqerform very well for this in-
stance of the problem. Most of the ROMs go unstable. The ntabtesand accurate ROMs are
those constructed for the isentropic compressible Naviekes equations. It is interesting that
the isentropic ROMs constructed in the stagnation energystagnation enthalpy inner products
(5.49) exhibit an instability. The cause of this insta@gishould be investigated in future work.
It is worthwhile to comment that the Reynolds numbers cargid here are much higher than
the Reynolds number considered in [81], an earlier work inctviihe effectiveness of ROMs
constructed using the stagnation energy and stagnatibalpgtinner products (5.49) for the isen-
tropic compressible Navier-Stokes equations was evaluéte noted earlier, the use of an energy
inner product to do the Galerkin projection step of the moeeéuction does not guarantee that the
stability of an equilibrium point other than the origin isegerved, nor does it guarantee that the
stability of limit cycles is preserved [81]. Moreover, arudidprium point of a dynamical system is
not necessarily an attractor of the system. Hence, a ROMrmmtsd in an energy inner product
may not preserve a Navier-Stokes attractor. This may be wihaippening here. Itis also possible
that boundary effects at the far-field boundary of the caaitydestabilizing the ROM (Appendix
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A.5). This can be remedied by implementing a non-reflectiogngary condition at the far-field
boundary in the ROM or solving the problem on a larger domaithat the boundary effects are

negligible [39].

It is noted that a ROM with much better stability propertiesswobtained when the snapshot set
employed to compute the POD basis includes the initial teamigresent in the high-fidelity so-
lution between timeé = 0 and timet = 5.0 x 102 seconds (results not shown here). Given that
the quality of the ROM seems to be highly dependent on whielpsimots are employed to con-
struct the POD basis, it would be worthwhile to examine tHeotfof various snapshot collection
strategies (e.g., [70, 82, 15]) on ROM stability and accyraduture work.

Table A.1. ROM relative errorséel q (viscous laminar cavity,

Re= 1000,K = 500 snapshots)

Inner

Physics M=5 M =10 M =15 M =20
product
Linearized L2 5.56 5.63 34.0 33.3
compr N-S symm 5.05 511 27.5 27.1
Nonlinear compr L? 7.99%x 102 | 596%x10%|9.39x 107 | 8.34x10°?
sentropic N-5 | Stag ene| 3.94x 102 | 4.06x 1072 NaN NaN
stag enth|| 4.05x 1072 | 4.02x 1072 NaN NaN
¢-formnoniinear |2 75, 10-1| 2545101 | 1.58x 10|  NaN
compr N-S
Nonlinear L? NaN 1.27x 1071 NaN 7.06x 1072
compr N-S
Table A.2. ROM relative errorséel  (viscous laminar cavity,
Re= 1500,K = 500 snapshots)
Physics Inner M=5 M =10 M =15 M = 20
product
Linearized L2 9.13 9.26 9.08 13.2
compr N-S symm 8.35 8.55 8.54 11.2
Nonlinear compr L2 9.34x 102 | 1.26x101 | 443x10°? | 8.44x10°7?
isentropic N-S stag ene| 5.28x 1072 | 554x 1072 | 6.58x 1072 NaN
stag enth| 5.59x 1072 | 5.81x 102 | 6.58x 102 NaN
¢-formnoniinear |2 798,101 pan NaN NaN
compr N-S
Nonlinear L? NaN 241x 101 NaN 1.88x 1071
compr N-S

A.7 Balanced truncation algorithm for model reduction

The balanced truncation algorithm, first introduced by Mopt3], assumes a semi-discrete full
order model of the form (4.18). The linear system (4.18) & firansformed into a balanced form
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that isolates observable and reachable (or controllabbeles: This is achieved by simultaneously
diagonalizing the reachability (or controllability) andservability Gramians. The reachability (or
controllability) Gramian (Chapter 30 of [23])

p= / " ABBTA Nt (A.35)
0

is the unique symmetric (at least) positive semi-definitatsmn of the Lyapunov equation
AP +PAT +BBT =0. (A.36)
The observability Gramian (Chapter 30 of [23])

Q= / T AT CT e, (A.37)
0

is the unique symmetric (at least) positive semi-definitatsan of the Lyapunov equation
ATQ+QA+C'C=0. (A.38)

It will be assumed herein that the matAxdefining the full order system (4.18) is stable, i.e., it has
no eigenvalues with a positive real part. It will also be assd(A,C) is observable an@A,B)

is reachable (controllable). If this is true, the Lyapunopations (A.36) and (A.38) will have
positive definite solution® andQ respectively (Chapter 6 of [62]). For a discussion of bagahc
truncation applied to unstable systems, the reader isreef¢o [21].

The balanced truncation algorithm is summarized belowtferspecific case of real system matri-
ceg A, B andC. First, the reachability GramiaR is obtained by solving the Lyapunov equation
(A.36). Next, the observability Gramia@ is obtained by solving the Lyapunov equation (A.38).
The Cholesky factorization d? is computed,

P=UU. (A.39)
followed by an eigenvalue decompositionfQU:
UTQU=KZKT. (A.40)
The balancing transformation matrices:
Tpar = Z¥2KTU™L T 1 =uUK=Z 12 (A.41)

can now be computédwhere the entries of are in decreasing order. The change of variables
Xn(t) = TpaXn(t) is applied to the full-order LTI system (4.18) to yield:

XN(t) = ToaAT %N (1) + ThaBup(t),
yQN(t) :CTE;P?N(U'

2In the case these matrices are complex, the transpose ioperan the algorithm (and all analysis of this algo-
rithm) should be replaced with a Hermitian transpBse

3In practice, the transformation matrices (A.41) are tyiijoeomputed aslpq = V2T, andTg&ﬁ = UW, where
Z is the Cholesky factor of the observability Grami&@+£ ZZT), andW is the left singular vector 07z (UTZ =
WZVT). This is due to numerical stability issues that could ailrismE):JmputingZ*l/2 in (A.41).

(A.42)
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Next, the matriced = Tpa AT}, B = TpaB, C = CT, } are partitioned as follows:
( A | A ( )
A21 A22 ’ (A.43)
(& \ &)

Here, the blocks with subscript 1 correspond to the mostrebbe and reachable states, and
blocks with subscript 2 correspond to the least observalteeachable states. Finally, the reduced
system for a ROM of siz# is given by:

xm(t)  =Amxm(t) +Bmup(t),
yom(t) = Cmxm(t),

whereAy = A11, By = By, Cu = C1. The left and right reduced bases are given respectively by:

Wy —Tbal( 1: M) Dy :Sbal(:71:M)7 (A.45)

(A.44)

whereSpy = Tp 3.

In effect, balanced truncation is a method for computingtést and trial base¥y, and®y in
(4.20). Given the test and trial bases defined in (A.45), tB&IRsystem matrices (A.44) can be
obtained from the formulas (4.21). The entries of the diafjomatrixZ in (A.41) are known as
the Hankel singular values of the system (4.18). Assumin@®Rf sizeM has been constructed
using balanced truncation, the following error bound onahgut can be shown [95]:

N

[lyon(t) —Yom(t)[]2 <2 aillup(t)|]2. (A.46)
i=fT1

Generally, balanced truncation is viewed as the “gold stegidn model reduction. Although it
is not optimal in the sense that there may be other ROMs witllemerror norms, the approach
hasa priori error bounds that are close to the lowest bounds achievabény reduced order
model [79]. Unfortunately, balanced truncation becomespmatationally intractable for systems
of very large dimension (e.g., of sidé> 10,000), and hence is not practical for many systems of
physical interest [81]. This is due to the high computati@oat of solving the Lyapunov equations
(A.36) and (A.38) for the reachability and observabilitya@rians ¢7(N3) operations). The storage
requirements of balanced truncation can be prohibitive @& ViEven efficient iterative schemes
developed for large sparse Lyapunov equations computethea to (A.36) and (A.38) in dense
form, and hence requir€(N?) storage [43]. Unlike POD, balanced truncation delivers RQNat
preserve stability of a stable system (4.18) [73], however.

A.8 Lyapunov inner product associated with balanced trunca
tion

In comparing the steps of the balanced truncation algorithth the discussion in Section 6.1,
the reader may observe some similarities. In particulah hfgorithms require the solution of a
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Lyapunov equation for a Gramian used to transform and rethesystem. Here, this connection
is investigated further. In particular, it is shown that tiedanced truncation algorithm (Appendix
A.7) may be viewed as a projection algorithm in a special Lyaqy inner product.

Suppose the stable LTI system (4.18) has been reduced imgrgptanced truncation model re-
duction algorithm summarized in Appendix A.7. In order t@waver the inner product associated
with balanced truncation, several transformations araired.

The first step is to substitute (A.41) into (A.45). Then, thldwing expressions for the left and
right bases are obtained:

Wl =Tpa(1:M,)) =5Y2(1:M,)KTU?, (A.47)
Dy = Spa (5, 1:M) = UKEY2(: 1 M). (A.48)

Remark that (A.47) and (A.48) satisfy the following identit
T lam 1MW P =0, (A.49)

whereP is the reachability Gramian (A.39). It follows that the ROystem matrices in (A.44)
are:

An =WLAG =W APTW S 1(1:M,1: M), (A.50)
Bum = WB, (A.51)
Cy=Co®=CP'Wyz1(1:M,1:M). (A.52)
Defining
zm(t) = Z7Y2(1:M, 1 M)xp(t), (A.53)

and employing the symmetry property of the reachabilityrGesm P = PT), (A.44) becomes:

() = PyAPPyzv () + PYyBuR(t),

(A.54)
yQM(t) = CPWnvzm (t),

where
Wy =Wy Y2(1:M,1:M). (A.55)

It is clear that (A.54) defines a projection of the original }stem (4.18) in aih? inner product
weighted by the reachability Gramian mati#x This matrix defines a true inner product in the
case whertP is symmetric positive-definite, which will hold {fA, B) is reachable (controllabl®)

A property of balanced truncation is that it preserves $itglwhen applied to stable systems [42]
(Appendix A.7). This result can be proven using the energthot The proof is analogous to the
proof of Theorem 6.1.1.

4Reachability (a.k.a. controllability) is a standard cqotd@ control theory. The author is referred to [11] for a
detailed discussion of reachability (controllability).
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A.9 Jacobian of objective function in ROM stabilization opti-
mization problem (6.24)

In this section, an analytic expression for the Jacobiah@bbjective function in the optimization
problem (6.24) for the specific case wheft) =0, y € R (there is a single output of interest), and
Al € R is derived. In many cases, it is possible to derive analjyithe Jacobian of the objec-
tive function in (6.24) without these simplified assumpsiphut this derivation will be problem-
dependent (i.e., it will depend on the specific forcing)). Lety = yk € R andyk; = y&, € R. If
u(t) = 0, the objective function in (6.24) evaluates to:

f = [|F||3, (A.56)

where
CSexp(Dt;)S x(0) —y*
CSexp(Dt2)S 1x(0) —y?

'|'|
Il

e RX. (A.57)

CSexp(Dtx )S1x(0) — y¥
Let J denote the Jacobian #f(A.56). The reader can verify that

J=2)lFeR" (A.58)
where the(k, )" entry of Jg is given by
Jr (k1) = t,CSexp(Dt) S x(0), (A.59)
fork=1,..,Kandl =1,...,L. In equation (A.59),
0
A 0
D = Al e RMXM. (A.60)
0
0

that is,D; is a matrix with a single entry of" in the position(l, 1), wherel is the position of the
I'h reassigned eigenvalue in the original mafix

A.10 Additional performance results for ROM stabilization via
eigenvalue reassignment Algorithm 2

The following tables give some additional performance ltegthe number of unstable eigenval-
ues, the number of upper bound constraints, the number ohiggtion iterations, the number

124



of function evaluations, and the first order optimality abwergence) for Algorithm 2 applied to
the ISS and electrostatically actuated beam problems deresl in Sectiond?). These results
enable one to study how these quantities changd afe reduced basis size, is increased. The
performance of the interior point method depends more ontingber of dofs in the optimization
problem (6.24), rather than the basis dizalirectly. For the problems considered hereinivags
increased, in general so does the number of unstable eigesvaf the ROM.

Table A.3. Performance of ni ncon interior point method for
Algorithm 2 applied to ISS problem as a functionMf(real eigen-

values)
M H 20 \ 40 \ 60
# unstable eigenvalues 4 5 6
# upper bound constraints 4 5 6
# optimization iterations 29 58 45
# function evaluations 30 59 46
first-order optimality at convergend&iL|) || 4.00x 1077 | 9.88x 107 | 2.46x 10~/
Table A.4. Performance of ni ncon interior point method for
Algorithm 2 applied to ISS problem as a functionMf(complex-
conjugate eigenvalues)
M H 20 \ 40 \ 60
# unstable eigenvalues 4 5 6
# upper bound constraints 3 3 3
# optimization iterations 27 50 62
# function evaluations 30 52 64
first-order optimality at convergendtiL|) || 5.51x 1077 | 2.46x 107 | 3.94x 10~/
Table A.5. Performance of mi ncon interior point method for
Algorithm 2 applied to electrostatically actuated beanbfgm as
a function ofM (real eigenvalues)
M H 17 34 51
# unstable eigenvalues 4 10 14
# upper bound constraints 4 10 14
# optimization iterations 60 78 96
# function evaluations 64 82 100
first-order optimality at convergendfiL|) || 2.27x 1077 | 4.61x 107 | 2.13x 10~/
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Table A.6. Performance of ni ncon interior point method for
Algorithm 2 applied to electrostatically actuated beanbfgm as
a function ofM (complex-conjugate eigenvalues)

M | 17 | 34 | 51

# unstable eigenvalues 4 10 14

# upper bound constraints 2 5 7

# optimization iterations 31 35 78

# function evaluations 32 36 79
first-order optimality at convergendélL|) || 8.43x 1077 | 6.20x107° | 1.08x 10~/

A.11 Flow control using ROMs

Flow control refers to the ability to manipulate a fluid flowdbange its behavior in a desirable
way, e.g., to reduce the noise in the flow, to increase theierifty of a combustion process, to
modify the stability of a laminar flow, or to reduce struciuwdoration caused by a flow passing
over a structure. There exist a variety of schemes for opeplas well as closed-loSgontrol of
complex physical systems [11, 96]. Unfortunately, for higtelity fluid models, the discretized
systems are often too large to be able to apply classical ftovral methods. This is especially
the case if an optimal controller is sought in real or neaf-tieme. Because reduced order models
are small and inexpensive by construction, they have a guantial for making the flow control
problem feasible.

In the targeted compressible captive-carry problem, a flomtrol strategy that minimizes cavity
oscillations (i.e., resonances) is sought. Suppose a lpghdsflow passes over the cavity (Fig-
ure A.3). A shear layer will form at the cavity’s upstreamrgen This shear layer will amplify
disturbances in the flow and convect them downstream, sicagftinem into pressure fluctuations
on the cavity’s downstream wall. These pressure fluctuatwilli propagate back upstream, and
excite further disturbances in the shear layer near thaegstcorner. The result is a feedback
loop of self-sustained cavity oscillations [53, 51]. Thegsure fluctuations on the downstream
wall of the cavity translate to large pressure loads withmd¢avity, which are undesirable as they
can lead to damage of the cavity and/or components withindkigy. Hence, an optimal feedback
controller is one that minimizes the pressure fluctuatiamshe downstream wall, and therefore
the oscillations within the cauvity.

In designing a closed-loop controller for the system désctiabove, it is necessary to have a
sensor (or set of sensors) and an actuator (or set of actjiatbhe former provides an output
to be controlled, whereas the latter represents an inpticrabe tuned to achieve the desired
output. Typically in flow control, the controller consistaxtuation, either in the form of a body

5An open-loop controller is a non-feedback controller, isecontroller that does not use feedback to determine if
its output has achieved the desired goal of the input.

6A closed-loop controller is a feedback controller, i.e.,amteoller consisting of a set of sensors for the mea-
surement of some system parameter that can communicat@sih of actuators, which can subsequently alter the
dynamics of the underlying system.
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force or boundary actuator (sucking or blowing), in an ugestn section of the domain. For the
compressible cavity, a reasonable location to apply theéadicn is in a region near the upstream
corner of the cavity where the shear layer originates. Aaealsle output of interest is the root-
mean-square pressure fluctuatipf,f) halfway up the downstream wall of the cavity. This value
correlates well with the pressure loads within the cavity an the cavity walls. The flow control
configuration is illustrated in Figure A.3.

Following standard control theory terminology [11, 96},tlee “plant” refer to the physical system
to be controlled, and let the “estimator” be the model usedstimate the state from which the
controller will be calculated. Here, the plant is the higiefity model of the compressible cavity
based on the nonlinear compressible Navier-Stokes eaqsatiRecause of its large computational
cost, it is not feasible to use the high-fidelity simulatiantle estimator. An alternative is to use
as the estimator a ROM for the high-fidelity model, compugedbntroller based on the ROM, and
then apply the ROM-based controller to the high-fidelity mioqdee Figure A.4 for an illustration
of the general approach). This idea has been studied by aeruoflauthors, e.g., lllingworth
et al. [53], Rowleyet al. [82], Barbagelloet al. [17], Bagheriet al. [13], llak [52], mostly in
the context of incompressible flow. These works have prochthte use linear control theory, i.e.,
using alinear low-dimensional model of the fluid flow to calculate a feedbaontroller for the
original nonlinearsystem. Here, the idea is applied to the compressible N&t@kes equations.
The ROM-based control approach explored as a part of thjegins summarized in the following
steps (illustrated in Figure A.4).

Step 1: Collect snapshots from a nonlinear high-fidelity CFD sintiolafor some set of inputs
u(t), and construct a POD basis from t his snapshot set.

Step 2: Build a ROM for a linearized version of the governing fluid tgya.
Step 3: Compute the optimal controller, denoteddpyy(t), using the ROM.
Step 4: Apply the optimal ROM-based controller at the high-fidehtypdel level.

A particular kind of linear controller is amenable to the floantrol problem of interest, namely a
linear quadratic regulator (LQR) controller, described@tail in [11, 96]. The optimal LQR con-
troller uppt(t) is one that minimizes (for the configuration of interest)fibiowing cost functional:

=7 / pwall + Tuopt Jdt, (A.61)

wherep|,, is the pressure fluctuation at the downstream wall of thetgavidr > 0 is a parameter
that controls the cost of the contrady:. It can be shown [11, 96] that the solution to the LQR
problem is obtained by solving a Lyapunov equation. The migaksolution of this equation is,
in general, tractable only if it is computed for a relativedw-dimensional model.

The capability to apply body force actuators has been adulétetSpi rit code as a part of this
LDRD project to enable flow control. As a preliminary stegg groposed ROM-based flow control
approach outlined above is tested on a proof of concept eeamplriven inviscid pulse test case.
The design of LQR ROM-based controllers for the compressiaVity may be the subject of future
work.
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Figure A.3. Target cavity flow control problem
A.11.1 Proof of concept: control of a driven inviscid pulse

The ROM-based flow control algorithm outlined above is t#sia a simpler problem than the
targeted compressible cavity configuration, namely thédlera of a driven inviscid pulse in a
uniform base flow. Consider the compressible Euler equst{ér22) on the 2D domai@ =
(—1,1)? in a uniform base flow having the following values:

p=10.1325 Pa
_ T=300K,
p=F=117x10"*kg/n?, (A.62)
Up=uU; =U3z=0.0m/s

C= 3479693 m/s

Driving the flow is a force for theo;—momentum equation. The force is given by the following
oscillatory function
fu,(X,t) = (1 x 10~%) cog2000t), (A.63)

and is applied in four elements near the center of the dorfain,c (—0.1,0)? (Figure A.5). The
high-fidelity solution is obtained in thel GVA CFD code using a mesh with 3362 nodes. The high-
fidelity simulation is run until timéTax= 5 x 102 seconds. A total oKmax= 2500 snapshots
(saved evernptsnap= 2 102 seconds) are collected and used to construct a 20 mode P@D bas
using the symmetry inner product (wikhgiven by (5.25)).

The following flow control problem for the driven pulse exdmfs formulated:

Compute the body force actuatiogg(t) in the regionx € (—0.1, 0)? such that the root-mean-
square pressure fluctuatior} g at the pointx = (1,0) is minimized (black dot in Figure A.5).

The controller is computed using the LQR approach and a syrgrROM estimator based on the
linearized compressible Euler equations (Section 5.2hge the optimal input is calculated, it is
applied to the high-fidelity simulation for the purpose dtieg its efficacy. Effectively, this is a
verification problem, as it is knowa priori what the controller should beip(t) = — fu, (X,t).
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Figure A.4. POD-Based cavity flow control road map

First, the 20 mode symmetry ROM is run in the uncontrolledmeayg to verify that it can reproduce
well the dynamics of the FOM. Figure A.6 shows the time hisioirthe modal amplitudesy ;
compared to the projection of the POD modes onto the snap&hetp, ¢;) for i = 1,2 (5.69).
One can see good agreement between the ROM coefficients enidjection of the snapshots
onto the POD modes for all times considered. Figure A.7 shwsmparison of the snapshots
with the ROM solution at the time of the 1®Gnapshot. Again, good agreement is observed.

Figure A.5. Domain with forced/actuated nodes (red) and re-
sponse node (black) (driven inviscid pulse problem)

Having verified the uncontrolled ROM’s ability to reproduite snapshots from which it is con-
structed, the sought-after LQR ROM-based controller isudated using theqr function in MAT-
LAB’s control toolbox [2]. Figure A.8(a) shows the optimalrtrolleruyp: obtained by the LQR
algorithm. As expected, the optimal controller is pregisible functionugpt(t) = —fy,(x,t) to
machine precision. Figure A.8 (b) show40, 1;t) for the uncontrolled FOM, compared with this
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Figure A.6. Time history of ROM coefficients; anda, (driven
inviscid pulse problem, uncontrolled)
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Figure A.7. Pressure fluctuation contours at time of £0ghap-
shot (driven inviscid pulse problem, uncontrolled)

value when the controller is applied. The reader can obgbatehe controller effectively wipes
out the pressure fluctuation at the point where it is minimhize
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